首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD) and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC) and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh) when compared to genetic control BL10ScSnJ mice (wild-type). In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.  相似文献   

2.
The molecular mechanisms by which bradykinin induces excessive airway obstruction in asthmatics remain unknown. Transforming growth factor (TGF)-beta has been involved in regulating airway inflammation and remodeling in asthma, although it is unknown whether TGF-beta can modulate bradykinin-associated bronchial hyperresponsiveness. To test whether TGF-beta directly modulates airway smooth muscle (ASM) responsiveness to bradykinin, isolated murine tracheal rings were used to assess whether TGF-beta alters ASM contractile responsiveness to bradykinin. Interestingly, we found TGF-beta-treated murine rings (12.5 ng/ml, 18 h) exhibited increased expression of bradykinin 2 (B(2)) receptors and became hyperreactive to bradykinin, as shown by increases in maximal contractile responses and receptor distribution. We investigated the effect of TGF-beta on bradykinin-evoked calcium signals since calcium is a key molecule regulating ASM excitation-contraction coupling. We reported that TGF-beta, in a dose- (0.5-10 ng/ml) and time- (2-24 h) dependent manner, increased mRNA and protein expression of the B(2) receptor in cultured human ASM cells. Maximal B(2) receptor protein expression that colocalized with CD44, a marker of membrane cell surface, occurred after 18 h of TGF-beta treatment and was further confirmed using fluorescence microscopy. TGF-beta (2.5 ng/ml, 18 h) also increased bradykinin-induced intracellular calcium mobilization in fura-2-loaded ASM cells. TGF-beta-mediated enhancement of calcium mobilization was not attenuated with indomethacin, a cyclooxygenase inhibitor. These data demonstrate for the first time that TGF-beta may play a role in mediating airway hyperresponsiveness to bradykinin seen in asthmatics by enhancing ASM contractile responsiveness to bradykinin, possibly as a result of increased B(2) receptor expression and signaling.  相似文献   

3.
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.  相似文献   

4.
《Life sciences》1995,56(13):PL231-PL235
Nitric oxide (NO) may play an important regulatory role in airway function. We have, thus, investigated in vitro whether epithelium derived NO may modulate cholinergic neurotrasmission, via release of NO in guinea pig trachea, by using L-arginine (L-ARG), a precursor of NO synthesis, and L-NG-nitro-arginine-methyl-ester (L-NAME), an inhibitor of NO synthase. Results show that L-ARG and L-NAME modify acetylcholine sensitivity in epithelium-intact smooth muscle preparations, suggesting a probable NO synthesis by tracheal guinea pig epithelium.  相似文献   

5.
Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short—acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024 could potentially provide clinical benefit when used adjunctively with inhaled β2-adrenoreceptor agonists in those patients exhibiting a reduced response to their chronic use.  相似文献   

6.
To assess the role of structures located superficially near the ventrolateral surface of the medulla on the reflex constriction of tracheal smooth muscle that occurs when airway and pulmonary receptors are stimulated mechanically or chemically, experiments were conducted in alpha-chloralose-anesthetized, paralyzed, and artificially ventilated cats. Pressure changes within a bypassed segment of the trachea were used as an index of alterations smooth muscle tone. The effects of focal cooling of the intermediate areas or topically applied lidocaine on the ventral surface of the medulla on the response of the trachea to mechanical and chemical stimulation of airway receptors were examined. Atropine abolished tracheal constriction induced by mechanical stimulation of the carina or aerosolized histamine, showing that the responses were mediated over vagal pathways. Moderate cooling of the intermediate area (20 degrees C) or local application of lidocaine significantly decreased the tracheal constrictive response to mechanical activation of airway receptors. Furthermore, when the trachea was constricted by histamine, cooling of the intermediate area significantly diminished the increased tracheal tone, whereas rewarming restored tracheal tone to the previous level. These findings suggest that under the conditions of the experiments the ventral surface of the medulla plays an important role in constriction of the trachea by inputs from intrapulmonary receptors and in the modulation of parasympathetic outflow to airway smooth muscle.  相似文献   

7.
Although the mechanisms that underlie airway hyperresponsiveness in asthma are complex and involve a variety of factors, evidence now suggests that intrinsic abnormalities in airway smooth muscle (ASM) may play an important role. We previously reported that TNF-alpha, a cytokine involved in asthma, augments G-protein-coupled receptor (GPCR) agonist-evoked calcium responses in cultured ASM cells. Here we have extended our previous studies by investigating whether TNF-alpha also modulates the contractile and relaxant responses to GPCR activation using cultured murine tracheal rings. We found that in tracheal rings treated with 50 ng/ml TNF-alpha, carbachol-induced isometric force was significantly increased by 30% compared with those treated with diluent alone (P < 0.05). TNF-alpha also augmented KCl-induced force generation by 70% compared with rings treated with diluent alone (P < 0.01). The enhancing effect of TNF-alpha on carbachol-induced isometric force generation was completely abrogated in the tracheal rings obtained from TNF-alpha receptor (TNFR)1-deficient mice and in control rings treated with a TNF-alpha mutant that solely activates TNFR2. TNF-alpha also attenuated relaxation responsiveness to isoproterenol but not to PGE2 or forskolin. TNF-alpha modulatory effects on GPCR-induced ASM responsiveness were completely abrogated by pertussis toxin, an inhibitor of Gialpha proteins. Taken together, these data suggest that TNF-alpha may participate in the development of airway hyperresponsiveness in asthma via the modulation of ASM responsiveness to both contractile and beta-adrenoceptor GPCR agonists.  相似文献   

8.
Increased airway smooth muscle (ASM) mass is a major feature of airway remodeling in asthma and chronic obstructive pulmonary disease. Growth factors induce a proliferative ASM phenotype, characterized by an increased proliferative state and a decreased contractile protein expression, reducing contractility of the muscle. Transforming growth factor-β-activated kinase 1 (TAK1), a mitogen-activated protein kinase kinase kinase, is a key enzyme in proinflammatory signaling in various cell types; however, its function in ASM is unknown. The aim of this study was to investigate the role of TAK1 in growth factor-induced phenotypic modulation of ASM. Using bovine tracheal smooth muscle (BTSM) strips and cells, as well as human tracheal smooth muscle cells, we investigated the role of TAK1 in growth factor-induced proliferation and hypocontractility. Platelet-derived growth factor- (PDGF; 10 ng/ml) and fetal bovine serum (5%)-induced increases in DNA synthesis and cell number in bovine and human cells were significantly inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). PDGF-induced DNA synthesis and extracellular signal-regulated kinase-1/2 phosphorylation in BTSM cells were strongly inhibited by both LL-Z-1640-2 pretreatment and transfection of dominant-negative TAK1. In addition, LL-Z-1640-2 inhibited PDGF-induced reduction of BTSM contractility and smooth muscle α-actin expression. The data indicate that TAK1 plays a major role in growth factor-induced phenotypic modulation of ASM.  相似文献   

9.
Reactive oxygen species (ROS) increase the contractile response of airway smooth muscle (ASM). Heme oxygenase (HO) catabolizes heme to the powerful antioxidant bilirubin. Because HO is expressed in the airways, we investigated its effects on ASM contractility and ROS production in guinea pig trachea. HO expression was higher in the epithelium than in tracheal smooth muscle. Incubation of tracheal rings (TR) with the HO inhibitor tin protoporphyrin (SnPP IX) or the HO substrate hemin increased and decreased, respectively, ASM contractile response to carbamylcholine. The effect of hemin was reversed by SnPP and mimicked by the antioxidants superoxide dismutase (SOD) and catalase. Hemin significantly reduced the effect of carbamylcholine in rings treated with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), compared with ODQ-treated rings without hemin incubation, suggesting that the CO-guanosine 3',5'-cyclic monophosphate pathway was not involved in the control of tracheal reactivity. SnPP and hemin increased and decreased ROS production by TR by 18 and 38%, respectively. Bilirubin (100 pM) significantly decreased TR contractility and ROS production. Hemin, bilirubin, and SOD/catalase decreased phosphorylation of the contractile protein myosin light chain, whereas SnPP significantly augmented it. These data suggest that modulation of the redox status by HO and, moreover, by bilirubin modulates ASM contractility by modulating levels of phosphorylated myosin light chain.  相似文献   

10.

Background

Mesenchyme-derived airway cell populations including airway smooth muscle (ASM) cells, fibroblasts and myofibroblasts play key roles in the pathogenesis of airway inflammation and remodeling. Phenotypic and functional characterisation of these cell populations are confounded by their heterogeneity in vitro. It is unclear which mechanisms underlie the creation of these different sub-populations.The study objectives were to investigate whether ASM cells are capable of clonal expansion and if so (i) what proportion possess this capability and (ii) do clonal populations exhibit variation in terms of morphology, phenotype, proliferation rates and pro-relaxant or pro-contractile signaling pathways.

Methods

Early passage human ASM cells were subjected to single-cell cloning and their doubling time was recorded. Immunocytochemistry was performed to assess localization and levels of markers previously reported to be specifically associated with smooth muscle or fibroblasts. Finally functional assays were used to reveal differences between clonal populations specifically assessing mitogen-induced proliferation and pro-relaxant and pro-contractile signaling pathways.

Results

Our studies provide evidence that a high proportion (58%) of single cells present within early passage human ASM cell cultures have the potential to create expanded cell populations. Despite being clonally-originated, morphological heterogeneity was still evident within these clonal populations as assessed by the range in expression of markers associated with smooth muscle cells. Functional diversity was observed between clonal populations with 10 μM isoproterenol-induced cyclic AMP responses ranging from 1.4 - 5.4 fold cf basal and bradykinin-induced inositol phosphate from 1.8 - 5.2 fold cf basal.

Conclusion

In summary we show for the first time that primary human ASM cells are capable of clonal expansion and that the resulting clonal populations themselves exhibit phenotypic plasticity.  相似文献   

11.
The airway smooth muscle (ASM) layer within the airway wall modulates airway diameter and distensibility. Even in the relaxed state, the ASM layer possesses finite stiffness and limits the extent of airway distension by the radial force generated by parenchymal tethers and transmural pressure. Airway stiffness has often been attributed to passive elements, such as the extracellular matrix in the lamina reticularis, adventitia, and the smooth muscle layer that cannot be rapidly modulated by drug intervention such as ASM relaxation by β-agonists. In this study, we describe a calcium-sensitive component of ASM stiffness mediated through the Rho-kinase signaling pathway. The stiffness of ovine tracheal smooth muscle was assessed in the relaxed state under the following conditions: 1) in physiological saline solution (Krebs solution) with normal calcium concentration; 2) in calcium-free Krebs with 2 mM EGTA; 3) in Krebs with calcium entry blocker (SKF-96365); 4) in Krebs with myosin light chain kinase inhibitor (ML-7); and 5) in Krebs with Rho-kinase inhibitor (Y-27632). It was found that a substantial portion of the passive stiffness could be abolished when intracellular calcium was removed; this calcium-sensitive stiffness appeared to stem from intracellular source and was not sensitive to ML-7 inhibition of myosin light chain phosphorylation, but was sensitive to Y-27632 inhibition of Rho kinase. The results suggest that airway stiffness can be readily modulated by targeting the calcium-sensitive component of the passive stiffness within the muscle layer.  相似文献   

12.
13.
Contractile responses of airway smooth muscle (ASM) determine airway resistance in health and disease. Caveolae microdomains in the plasma membrane are marked by caveolin proteins and are abundant in contractile smooth muscle in association with nanospaces involved in Ca(2+) homeostasis. Caveolin-1 can modulate localization and activity of signaling proteins, including trimeric G proteins, via a scaffolding domain. We investigated the role of caveolae in contraction and intracellular Ca(2+) ([Ca(2+)](i)) mobilization of ASM induced by the physiological muscarinic receptor agonist, acetylcholine (ACh). Human and canine ASM tissues and cells predominantly express caveolin-1. Muscarinic M(3) receptors (M(3)R) and Galpha(q/11) cofractionate with caveolin-1-rich membranes of ASM tissue. Caveolae disruption with beta-cyclodextrin in canine tracheal strips reduced sensitivity but not maximum isometric force induced by ACh. In fura-2-loaded canine and human ASM cells, exposure to methyl-beta-cyclodextrin (mbetaCD) reduced sensitivity but not maximum [Ca(2+)](i) induced by ACh. In contrast, both parameters were reduced for the partial muscarinic agonist, pilocarpine. Fluorescence microscopy revealed that mbetaCD disrupted the colocalization of caveolae-1 and M(3)R, but [N-methyl-(3)H]scopolamine receptor-binding assay revealed no effect on muscarinic receptor availability or affinity. To dissect the role of caveolin-1 in ACh-induced [Ca(2+)](i) flux, we disrupted its binding to signaling proteins using either a cell-permeable caveolin-1 scaffolding domain peptide mimetic or by small interfering RNA knockdown. Similar to the effects of mbetaCD, direct targeting of caveolin-1 reduced sensitivity to ACh, but maximum [Ca(2+)](i) mobilization was unaffected. These results indicate caveolae and caveolin-1 facilitate [Ca(2+)](i) mobilization leading to ASM contraction induced by submaximal concentrations of ACh.  相似文献   

14.
The expression balance of M2 and M3 muscarinic receptor subtypes on the pathogenesis of airway hyperresponsiveness was investigated by using two congenitally related strains of guinea pigs, bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR). CCh-induced airway responses in vivo and in vitro were investigated by comparing the effects of muscarinic receptor subtype antagonists, and the relative amounts of M2 and M3 muscarinic receptor mRNA in tracheal smooth muscle and lung tissue were investigated. After treatment with muscarinic receptor subtype antagonists, the ventilatory mechanics (VT, Raw, and Cdyn) of response to CCh aerosol inhalation were measured by the bodyplethysmograph method. The effects of these antagonists on CCh-induced tracheal smooth muscle contraction were also investigated. The effects of M2 muscarinic receptor blockade were less but the effects of M3 muscarinic receptors blockade on the airway contractile responses were greater in BHS than in BHR. In M3 muscarinic receptor blockades, CCh-induced tracheal contractions in BHS were significantly greater than those in BHR. In tracheal smooth muscle from BHS, the relative amount of M2 muscarinic receptors mRNA was less but that of M3 muscarinic receptor mRNA was more than those in BHR. These results suggest that the high ACh level as a consequence of dysfunction of M2 muscarinic autoreceptors and the excessive effect of M3 muscarinic receptors on the airway smooth muscle may play an important role in the pathogenesis of airway hyperresponsiveness.  相似文献   

15.
16.
The participation of large-conductance Ca2+ activated K+ channels (BKs) in chloroquine (chloro)-induced relaxation of precontracted airway smooth muscle (ASM) is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs) and chloro both completely blocked spontaneous transient outward currents (STOCs) in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs). We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH). Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax), BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.  相似文献   

17.
Activation of airway smooth muscle (ASM) cells plays a central role in the pathophysiology of asthma. Because ASM is an important therapeutic target in asthma, it is beneficial to develop bioengineered ASM models available for assessing physiological and biophysical properties of ASM cells. In the physiological condition in vivo, ASM cells are surrounded by extracellular matrix (ECM) and exposed to mechanical stresses such as cyclic stretch. We utilized a 3-D culture model of human ASM cells embedded in type-I collagen gel. We further examined the effects of cyclic mechanical stretch, which mimics tidal breathing, on cell orientation and expression of contractile proteins of ASM cells within the 3-D gel. ASM cells in type-I collagen exhibited a tissue-like structure with actin stress fiber formation and intracellular Ca2+ mobilization in response to methacholine. Uniaxial cyclic stretching enhanced alignment of nuclei and actin stress fibers of ASM cells. Moreover, expression of mRNAs for contractile proteins such as α-smooth muscle actin, calponin, myosin heavy chain 11, and transgelin of stretched ASM cells was significantly higher than that under the static condition. Our findings suggest that mechanical force and interaction with ECM affects development of the ASM tissue-like construct and differentiation to the contractile phenotype in a 3-D culture model.  相似文献   

18.
《Journal of Physiology》1997,91(3-5):199-202
The effects of histamine and dimaprit on intestinal smooth muscle contractility were investigated on isolated cells from longitudinal muscle of the guinea pig ileum. Both histamine (10−14–10−10 M) and dimaprit (10−13–10−10 M) exerted a concentration-dependent contraction of intestinal cells, causing a maximum decrease in cell length of about 20%. This effect was not significantly different from that induced by cholecystokinin-octapeptide (CCK-8) 10−9 M. The concentration-response curves to histamine and dimaprit were shifted to the left in the presence of the histamine H2-receptor antagonist famotidine (10−7 M) indicating the occurrence in the smooth muscle of H2 receptors mediating relaxation. Whereas the contraction produced by histamine was competitively antagonized by the H1 receptor antagonist mepyramine (10−8 M), neither mepyramine (10−7 M) nor temelastine (10−7 M) did modify the contractile effect of dimaprit. In contrast, atropine (10−8 M) significantly depressed the maximum response to dimaprit without affecting that exerted by histamine. These data indicate that histamine and dimaprit can modify intestinal contractility, by acting via different mechanisms; while the contractile action of histamine is related to H1 receptor activation, that produced by dimaprit involves cholinergic pathways.  相似文献   

19.
Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.  相似文献   

20.

Background

Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can be inhibited by the laminin-competing peptide Tyr-Ile-Gly-Ser-Arg (YIGSR). The role of laminins in ASM remodelling in chronic asthma in vivo, however, has not yet been established.

Methods

Using an established guinea pig model of allergic asthma, we investigated the effects of topical treatment of the airways with YIGSR on features of airway remodelling induced by repeated allergen challenge, including ASM hyperplasia and hypercontractility, inflammation and fibrosis. Human ASM cells were used to investigate the direct effects of YIGSR on ASM proliferation in vitro.

Results

Topical administration of YIGSR attenuated allergen-induced ASM hyperplasia and pulmonary expression of the proliferative marker proliferating cell nuclear antigen (PCNA). Treatment with YIGSR also increased both the expression of sm-MHC and ASM contractility in saline- and allergen-challenged animals; this suggests that treatment with the laminin-competing peptide YIGSR mimics rather than inhibits laminin function in vivo. In addition, treatment with YIGSR increased allergen-induced fibrosis and submucosal eosinophilia. Immobilized YIGSR concentration-dependently reduced PDGF-induced proliferation of cultured ASM to a similar extent as laminin-coated culture plates. Notably, the effects of both immobilized YIGSR and laminin were antagonized by soluble YIGSR.

Conclusion

These results indicate that the laminin-competing peptide YIGSR promotes a contractile, hypoproliferative ASM phenotype in vivo, an effect that appears to be linked to the microenvironment in which the cells are exposed to the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号