首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting their migration and proliferation in vitro and injury-induced neointima formation in vivo.  相似文献   

2.
Platelet-derived growth factor BB induced cyclin D1 expression in a time- and nuclear factor of activated T cells (NFAT)-dependent manner in human aortic smooth muscle cells (HASMCs), and blockade of NFATs prevented HASMC DNA synthesis and their cell cycle progression from G1 to S phase. Selective inhibition of NFATc1 by its small interfering RNA also blocked HASMC proliferation and migration. Characterization of the cyclin D1 promoter revealed the presence of several NFAT binding sites, and the site at nucleotide −1333 was found to be sufficient in mediating platelet-derived growth factor BB-induced cyclin D1 promoter-luciferase reporter gene activity. In addition to its role in cell cycle progression, cyclin D1 mediated HASMC migration in an NFATc1-dependent manner. Balloon injury-induced cyclin D1-CDK4 activity requires NFAT activation, and adenovirus-mediated transduction of cyclin D1 was found to be sufficient to overcome the blockade effect of NFATs by VIVIT on balloon injury-induced vascular wall remodeling events, including smooth muscle cell migration from the medial to luminal region, their proliferation in the intimal region, and neointima formation. Together, these results provide more mechanistic evidence for the role of NFATs, particularly NFATc1, in the regulation of HASMC proliferation and migration as well as vascular wall remodeling. NFATc1 could be a potential therapeutic target against the renarrowing of artery after angioplasty.  相似文献   

3.
Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein–coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin–WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration.  相似文献   

4.
Platelet-derived growth factor BB (PDGF-BB) induced cyclin A expression and CDK2 activity in vascular smooth muscle cells (VSMC). Inhibition of nuclear factors of activated T cell (NFAT) activation by cyclosporin A (CsA) and VIVIT suppressed PDGF-BB-induced cyclin A expression and CDK2 activity, resulting in blockade of VSMC in the G(1) phase. In addition, CsA- and VIVIT-mediated inhibition of NFATs and small interfering RNA-targeted down-regulation of cyclin A levels suppressed PDGF-BB-induced VSMC DNA synthesis. PDGF-BB also induced cyclin A mRNA levels in VSMC in an NFAT-dependent manner. Cloning and bioinformatic analysis of rat cyclin A promoter revealed the presence of NFAT-binding elements, and PDGF-BB induced the binding of NFATs to these regulatory sequences in a CsA- and VIVIT-sensitive manner. Chromatin immunoprecipitation analysis showed that NFATc1 binds to the cyclin A promoter in response to PDGF-BB in a VIVIT-sensitive manner. Furthermore, PDGF-BB induced cyclin A promoter-luciferase reporter gene activity in VSMC, and it was inhibited by both CsA and VIVIT. Balloon injury induced cyclin A expression and CDK2 activity in rat carotid arteries, and these responses were also blocked by VIVIT. In addition, VIVIT attenuated balloon injury-induced SMC proliferation, resulting in reduced restenosis. Down-regulation of NFATc1 by its small interfering RNA inhibited PDGF-BB-induced cyclin A expression and DNA synthesis both in rat and human VSMC. Together, these findings demonstrate that the cyclin A-CDK2 complex may be a potential effector of NFATs, specifically NFATc1, in mediating SMC multiplication leading to neointima formation. Therefore, NFATs may be used as target molecules for the development of therapeutic agents against vascular diseases such as restenosis.  相似文献   

5.
Smooth muscle cell migration plays an important role during angiogenesis and vascular remodeling. In this study, we examined the effects of doxycycline and minocycline on vascular endothelial growth factor (VEGF)-induced human aortic smooth muscle cell (HASMCs) migration, and explored the mechanisms in which doxycycline or minocycline inhibit HASMC migration. We demonstrated that both doxycycline and minocycline attain consistent anti-angiogenic effects in the inhibition of HASMC migration via a different signal pathway (p<0.05). This effect is through attenuating VEGF-induced matrix metalloproteinase-9 (MMP-9) activity (p<0.05). Doxycycline could increase tissue inhibitors of metalloproteinases-1 (TIMP-1) expression while minocycline down-regulated PI3K/Akt phosphorylation in HASMC. Our study suggests that doxycycline has a stronger ability to inhibit MMP secretion in HASMC by up-regulating endogenous MMPs inhibitor TIMP-1, while minocycline implements anti-angiogenic effect through inhibiting HASMC migration by down-regulating PI3K/Akt pathway.  相似文献   

6.
7.
Thrombin, a G protein-coupled receptor agonist, induced a biphasic expression of cyclin D1 in primary vascular smooth muscle cells. Although both phases of cyclin D1 expression require binding of the newly identified cooperative complex, NFATc1·STAT-3, to its promoter, the second phase, which is more robust, depends on NFATc1-mediated recruitment of p300 onto the complex and the subsequent acetylation of STAT-3. In addition, STAT-3 is tyrosine-phosphorylated in a biphasic manner, and the late phase requires NFATc1-mediated p300-dependent acetylation. Furthermore, interference with acetylation of STAT-3 by overexpression of acetylation null STAT-3 mutant led to the loss of the late phase of cyclin D1 expression. EMSA analysis and reporter gene assays revealed that NFATc1·STAT-3 complex binding to the cyclin D1 promoter led to an enhanceosome formation and facilitated cyclin D1 expression. In the early phase of its expression, cyclin D1 is localized mostly in the cytoplasm and influenced cell migration. However, during the late and robust phase of its expression, cyclin D1 is translocated to the nucleus and directed cell proliferation. Together, these results demonstrate for the first time that the dual function of cyclin D1 in cell migration and proliferation is temperospatially separated by its biphasic expression, which is mediated by cooperative interactions between NFATc1 and STAT-3.  相似文献   

8.
9.
The proliferation of vascular smooth muscle cells is important in the pathogenesis of many vascular diseases. Reactive oxygen species (ROS) produced by NADPH oxidases in smooth muscle cells have been shown to participate in signaling cascades regulating proliferation induced by platelet-derived growth factor (PDGF), a powerful smooth muscle mitogen. We sought to determine the role of Nox5 in the regulation of PDGF-stimulated human aortic smooth muscle cell (HASMC) proliferation. Cultured HASMC were found to express four isoforms of Nox5. When HASMC stimulated with PDGF were pretreated with N-acetyl cysteine (NAC), proliferation was significantly reduced. Proliferation induced by PDGF was also heavily dependent on JAK/STAT activation, as the JAK inhibitor, AG490, was able to completely abolish PDGF-stimulated HASMC growth. Specific knockdown of Nox5 with a siRNA strategy reduced PDGF-induced HASMC ROS production and proliferation. Additionally, siRNA to Nox5 inhibited PDGF-stimulated JAK2 and STAT3 phosphorylation. ROS produced by Nox5 play an important role in PDGF-induced JAK/STAT activation and HASMC proliferation.  相似文献   

10.
Protein kinase N1 (PKN1) is a member of the protein kinase C superfamily. Aberrations of PKN1 kinase activity are involved in several human pathological processes, including cancer. We found that PKN family proteins (PKN1/2/3) are phosphorylated in response to antitubulin drug-induced mitotic arrest. We identified cyclin-dependent kinase 1 (CDK1) as the corresponding kinase for PKN protein phosphorylation. CDK1 phosphorylates PKN1 at S533, S537, S562, and S916 in vitro and in cells during drug-induced mitotic arrest. Immunofluorescence staining further confirmed that PKN1 phosphorylation occurs during normal mitosis in a CDK1-dependent manner. Knockdown of PKN1 significantly inhibited anchorage-independent growth and migration without affecting proliferation in multiple cancer cell lines. We further showed that mitotic phosphorylation is essential for PKN1's oncogenic function, as the non-phosphorylatable mutant PKN1-4A failed to rescue anchorage-independent growth and migration in PKN1-knockdown cells. Thus, our findings reveal a novel regulatory mechanism for PKN1 in mitosis and its role in tumorigenesis.  相似文献   

11.
12.
Although monocyte chemotactic protein-1 (MCP-1) is best known for its ability to recruit mononuclear cells, few studies have examined the effects of this chemokine on other events in the vascular response to injury. The purpose of the present study was to determine the influence of MCP-1 on human vascular smooth muscle (VSMC) proliferation. MCP-1 induced concentration-dependent VSMC proliferation as measured by bromodeoxyuridine (BrdU) uptake. Direct cell counting demonstrated a twofold increase in VSMC after stimulation with MCP-1. This mitogenic effect was similar to that observed with the prototypical atherogenic cytokine platelet-derived growth factor. Immunohistochemistry and Western blot analysis revealed that MCP-1 increased both proliferating nuclear cell antigen and cyclin A expression. Whereas MCP-1 did not promote nuclear factor-kappaB activation, MCP-1-induced VSMC proliferation appeared to be dependent on phosphotidylinositol 3-kinase activation. In conclusion, MCP-1 directly induces VSMC growth, which is associated with activation of cell cycle proteins and intracellular proliferative signals. Within the inflammatory paradigm of vascular remodeling, these data suggest that MCP-1 is more than simply a chemokine but also a potent mitogen for VSMC proliferation.  相似文献   

13.
Our previous study demonstrated that pigment epithelium-derived factor (PEDF) plays an important role in the proliferation and migration of human aortic smooth muscle cells (HASMCs). In the present study, we examined whether PEDF inhibited platelet-derived growth factor (PDGF)-stimulated HASMC migration and proliferation. PEDF dose-dependently reduced PDGF-induced HASMC migration and proliferation in vitro and also arrested cell cycle progression in the G0/G1 phase, and this was associated with decreased expression of cyclin D1, cyclin E, CDK2, CDK4, and p21(Cip1) and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1). The antiproliferative and antimigratory effects of PEDF were partially blocked by the PPARγ antagonist GW9662, but not by the PPARα antagonist MK886. In in vivo studies, the femoral artery of C57BL/6 mice was endothelial-denuded and the mice injected intravenously with PEDF or vehicle. After 2 weeks, both the neointima/media area ratio and cell proliferation (proliferating cell nuclear antigen-positive cells) in the neointima were significantly reduced and again these effects were partially reversed by GW9662 pretreatment. Our data show that PEDF increases PPARγ activation, preventing entry of HASMCs into the cell cycle in vitro and reducing the neointimal area and cell proliferation in the neointima in vivo. Thus, PEDF may represent a safe and effective novel target for the prevention and treatment of vascular proliferative diseases.  相似文献   

14.
Vessel wall remodeling is a complex phenomenon in which the loss of differentiation of vascular smooth muscle cells (VSMCs) occurs. We investigated the role of rat macrophage chemoattractant protein (MCP)-1 on rat VSMC proliferation and migration to identify the mechanism(s) involved in this kind of activity. Exposure to very low concentrations (1-100 pg/ml) of rat MCP-1 induced a significant proliferation of cultured rat VSMCs assessed as cell duplication by the counting of total cells after exposure to test substances. MCP-1 stimulated VSMC proliferation and migration in a two-dimensional lateral sheet migration of adherent cells in culture. Endogenous vascular endothelial growth factor-A (VEGF-A) was responsible for the mitogenic activity of MCP-1, because neutralizing anti-VEGF-A antibody inhibited cell proliferation in response to MCP-1. On the contrary, neutralizing anti-fibroblast growth factor-2 and anti-platelet-derived growth factor-bb antibodies did not affect VSMC proliferation induced by MCP-1. RT-PCR and Western blot analyses showed an increased expression of either mRNA or VEGF-A protein after MCP-1 activation (10-100 pg/ml), whereas no fms-like tyrosine kinase (Flt)-1 receptor upregulation was observed. Because we have previously demonstrated that hypoxia (3% O2) can enhance VSMC proliferation induced by VEGF-A through Flt-1 receptor upregulation, the effects of hypoxia on the response of VSMCs to MCP-1 were investigated. Severe hypoxia (3% O2) potentiated the growth-promoting effect of MCP-1, which was able to significantly induce cell proliferation even at a concentration as low as 0.1 pg/ml. These findings demonstrate that low concentrations of rat MCP-1 can directly promote rat VSMC proliferation and migration through the autocrine production of VEGF-A.  相似文献   

15.
16.
VEGF is a key regulator of endothelial cell migration, proliferation, and inflammation, which leads to activation of several signaling cascades, including the calcineurin-nuclear factor of activated T cells (NFAT) pathway. NFAT is not only important for immune responses but also for cardiovascular development and the pathogenesis of Down syndrome. By using Down syndrome model mice and clinical patient samples, we showed recently that the VEGF-calcineurin-NFAT signaling axis regulates tumor angiogenesis and tumor metastasis. However, the connection between genome-wide views of NFAT-mediated gene regulation and downstream gene function in the endothelium has not been studied extensively. Here we performed comprehensive mapping of genome-wide NFATc1 binding in VEGF-stimulated primary cultured endothelial cells and elucidated the functional consequences of VEGF-NFATc1-mediated phenotypic changes. A comparison of the NFATc1 ChIP sequence profile and epigenetic histone marks revealed that predominant NFATc1-occupied peaks overlapped with promoter-associated histone marks. Moreover, we identified two novel NFATc1 regulated genes, CXCR7 and RND1. CXCR7 knockdown abrogated SDF-1- and VEGF-mediated cell migration and tube formation. siRNA treatment of RND1 impaired vascular barrier function, caused RhoA hyperactivation, and further stimulated VEGF-mediated vascular outgrowth from aortic rings. Taken together, these findings suggest that dynamic NFATc1 binding to target genes is critical for VEGF-mediated endothelial cell activation. CXCR7 and RND1 are NFATc1 target genes with multiple functions, including regulation of cell migration, tube formation, and barrier formation in endothelial cells.  相似文献   

17.
Pyrrolidine dithiocarbamate (PDTC) is a metal-chelating compound that acts as antioxidant or pro-oxidant and is widely used to study redox regulation of cell function. In the present study, we investigated effects of PDTC and another antioxidant, N-acetyl-l-cysteine (NAC), on TNF-alpha-dependent activation of NF-kappaB in human aortic smooth muscle cells (HASMC). Treatment of the cells with TNF-alpha induced the activation of p65/p50 heterodimer NF-kappaB and increased the mRNA levels of monocyte chemoattractant protein (MCP)-1. Pretreatment with PDTC markedly suppressed the NF-kappaB activation and expression of MCP-1 by inhibiting IkappaB-alpha degradation. In contrast, NAC had no effect. PDTC concomitantly increased the intracellular levels of copper, and bathocuproinedisulfonic acid, a non-cell-permeable chelator of Cu(1+), inhibited the PDTC-induced increase in intracellular copper level and reversed the PDTC effects on IkappaB-alpha, NF-kappaB, and MCP-1. These results indicate that TNF-alpha-dependent expression of MCP-1 in HASMC is tightly regulated by NF-kappaB and that intracellular copper level is crucial for the TNF-alpha-dependent activation of NF-kappaB in HASMC.  相似文献   

18.
Human vascular smooth muscle cell proliferation and migration contribute to vascular remodeling in pulmonary hypertension and atherosclerosis. The precise mechanisms that regulate structural remodeling of the vessel wall remain unknown. This study tests the hypothesis that phosphatidylinositol 3-kinase (PI3K) activation is both necessary and sufficient to mediate human pulmonary vascular smooth muscle (PVSM) cell proliferation and migration. Microinjection of human PVSM cells with a dominant-negative class IA PI3K inhibited platelet-derived growth factor (PDGF)-induced DNA synthesis by 65% (P < 0.001; chi(2) analysis) compared with cells microinjected with control plasmid, whereas microinjection of cells with a constitutively active class IA PI3K (p110*-CA) was sufficient to induce DNA synthesis (mitotic index of p110*-CA-microinjected cells was 15% vs. 3% in control cells; P < 0.01). Transfection of PVSM cells with p110*-CA was also sufficient to promote human PVSM cell migration. In parallel experiments, stimulation of human PVSM cells with PDGF induced PI3K-dependent activation of Akt, p70 S6 kinase, and ribosomal protein S6 but not mitogen-activated protein kinase. PDGF-induced proliferation and migration was inhibited by LY-294002. These results demonstrate that PI3K signaling is both necessary and sufficient to mediate human PVSM cell proliferation and migration and suggest that the activation of PI3K may play an important role in vascular remodeling.  相似文献   

19.
Summary Monocyte chemotactic protein-1 (MCP-1), a potent chemoattractant for monocytes, is thought to play a major role in atherosclerosis, but whether its atherogenic effects involve the direct modulation of vascular smooth muscle cell (SMC) functions remains unclear. This study examined the effects of MCP-1 on the migration of cultured A7r5 SMCs and the signaling pathways involved. Addition of recombinant MCP-1 stimulated SMC migration in modified Boyden chambers coated with type I collagen in a concentration-dependent manner, with 10–9 M being maximally effective. Using untreated A7r5 cells, two MCP-1 receptors, CCR2 and CCR4, were detected and MCP-1 secretion was significantly increased by stimulation with platelet-derived growth factor. MCP-1-stimulated A7r5 migration was completely blocked by the NAD(P)H oxidase inhibitor, diphenylene iodonium (DPI), and dose-dependently inhibited by polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), suggesting a role for reactive oxygen species (ROS) in this process. During MCP-1 stimulation, ROS production increased rapidly, then gradually decayed over 60 min, and this effect was markedly decreased by pretreatment with DPI or PEG-SOD. Interestingly, U0126 and PD98059, which inhibit activation of extracellular signal-regulated kinases 1/2 (ERK 1/2), significantly inhibited MCP-1-activated ROS generation. Furthermore, transfection of an active mutant of MEK1 (ERK 1/2 kinase) markedly increased superoxide production in rat aortic smooth muscle cells, as detected by dihydroethydium staining, suggesting that ERK 1/2 activation stimulates ROS generation. ERK 1/2 activation was increased for at least 30 min in cells incubated with MCP-1, and this effect was abolished by U0126 or DPI pretreatment. These results demonstrate that MCP-1 is a chemoattractant for SMCs and that MCP-1-stimulated migration requires both ROS production and ERK 1/2 activation in a positive activation loop, which may contribute to the atherogenic effects of MCP-1.These authors contributed equally to this work.  相似文献   

20.
Smooth muscle cell (SMC) migration plays an important role in normal angiogenesis and is relevant to disease-related vascular remodeling in conditions such as brain arteriovenous malformations, pulmonary hypertension, arteriosclerosis, and restenosis after angioplasty. In this present study, we showed that tanshinone IIA, the major lipid-soluble pharmacological constituent of Salvia miltiorrhiza BUNGE, inhibits human aortic smooth muscle cell (HASMC) migration and MMP-9 activity. Tanshinone IIA significantly inhibited IkappaBalpha phosphorylation and p65 nuclear translocation through inhibition of AKT phosphorylation. Tanshinone IIA inhibited TNF-alpha-induced ERK and c-jun phosphorylation, but not other MAPKs such as JNK and p38. Tanshinone IIA also inhibited NF-kappaB and AP-1 DNA-binding. Moreover, tanshinone IIA inhibited the migration of TNF-alpha-induced HASMCs. Our results provide evidence that tanshinone IIA has multiple effects in the inhibition of HASMC migration and may offer a therapeutic approach to block HASMC migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号