首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although genome-wide association studies (GWAS) of complex traits have yielded more reproducible associations than had been discovered using any other approach, the loci characterized to date do not account for much of the heritability to such traits and, in general, have not led to improved understanding of the biology underlying complex phenotypes. Using a web site we developed to serve results of expression quantitative trait locus (eQTL) studies in lymphoblastoid cell lines from HapMap samples (http://www.scandb.org), we show that single nucleotide polymorphisms (SNPs) associated with complex traits (from http://www.genome.gov/gwastudies/) are significantly more likely to be eQTLs than minor-allele-frequency–matched SNPs chosen from high-throughput GWAS platforms. These findings are robust across a range of thresholds for establishing eQTLs (p-values from 10−4–10−8), and a broad spectrum of human complex traits. Analyses of GWAS data from the Wellcome Trust studies confirm that annotating SNPs with a score reflecting the strength of the evidence that the SNP is an eQTL can improve the ability to discover true associations and clarify the nature of the mechanism driving the associations. Our results showing that trait-associated SNPs are more likely to be eQTLs and that application of this information can enhance discovery of trait-associated SNPs for complex phenotypes raise the possibility that we can utilize this information both to increase the heritability explained by identifiable genetic factors and to gain a better understanding of the biology underlying complex traits.  相似文献   

2.
The integration of genomic and epigenomic data is an increasingly popular approach for studying the complex mechanisms driving cancer development. We have developed a method for evaluating both methylation and copy number from high-density DNA methylation arrays. Comparing copy number data from Infinium HumanMethylation450 BeadChips and SNP arrays, we demonstrate that Infinium arrays detect copy number alterations with the sensitivity of SNP platforms. These results show that high-density methylation arrays provide a robust and economic platform for detecting copy number and methylation changes in a single experiment. Our method is available in the ChAMP Bioconductor package: http://www.bioconductor.org/packages/2.13/bioc/html/ChAMP.html.  相似文献   

3.
《PloS one》2013,8(7)
Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling, concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of 185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A total of 98,113,070 pairs of genotypes were tested and 99.77% were concordant, 0.14% had missing data, and 0.09% were discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.chargeconsortium.com/main/exomechip.  相似文献   

4.
Current genotype-calling methods such as Robust Linear Model with Mahalanobis Distance Classifier (RLMM) and Corrected Robust Linear Model with Maximum Likelihood Classification (CRLMM) provide accurate calling results for Affymetrix Single Nucleotide Polymorphisms (SNP) chips. However, these methods are computationally expensive as they employ preprocess procedures, including chip data normalization and other sophisticated statistical techniques. In the small sample case the accuracy rate may drop significantly. We develop a new genotype calling method for Affymetrix 100 k and 500 k SNP chips. A two-stage classification scheme is proposed to obtain a fast genotype calling algorithm. The first stage uses unsupervised classification to quickly discriminate genotypes with high accuracy for the majority of the SNPs. And the second stage employs a supervised classification method to incorporate allele frequency information either from the HapMap data or from a self-training scheme. Confidence score is provided for every genotype call. The overall performance is shown to be comparable to that of CRLMM as verified by the known gold standard HapMap data and is superior in small sample cases. The new algorithm is computationally simple and standalone in the sense that a self-training scheme can be used without employing any other training data. A package implementing the calling algorithm is freely available at http://www.sfs.ecnu.edu.cn/teachers/xuj_en.html.  相似文献   

5.
Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/.  相似文献   

6.
7.

Background

Rapid response to chemotherapy in metastatic colorectal cancer (mCRC) patients (response within 12 weeks of chemotherapy) may increase the chance of complete resection and improved survival. Few molecular markers predict irinotecan-induced rapid response and survival. Single-nucleotide polymorphisms (SNPs) in solute carrier genes are reported to correlate with the variable pharmacokinetics of irinotecan and folate in cancer patients. This study aims to evaluate the predictive role of 3 SNPs in mCRC patients treated with irinotecan and fluoropyrimidine-containing regimens.

Materials and Methods

Three SNPs were selected and genotyped in 137 mCRC patients from a Chinese prospective multicenter trial (NCT01282658). The chi-squared test, univariate and multivariable logistic regression model, and receiver operating characteristic analysis were used to evaluate correlations between the genotypes and rapid response. Kaplan-Meier survival analysis and Cox proportional hazard models were used to evaluate the associations between genotypes and survival outcomes. Benjamini and Hochberg False Discovery Rate correction was used in multiple testing

Results

Genotype GA/AA of SNP rs2306283 of the gene SLCO1B1 and genotype GG of SNP rs1051266 of the gene SLC19A1 were associated with a higher rapid response rate (odds ratio [OR] =3.583 and 3.521, 95%CI =1.301-9.871 and 1.271-9.804, p=0.011 and p=0.013, respectively). The response rate was 70% in patients with both genotypes, compared with only 19.7% in the remaining patients (OR = 9.489, 95%CI = 2.191-41.093, Fisher''s exact test p=0.002). Their significances were all maintained even after multiple testing (all p c < 0.05). The rs2306283 GA/AA genotype was also an independent prognostic factor of longer progression-free survival (PFS) (hazard ratio = 0.402, 95%CI = 0.171-0.945, p=0.037). None of the SNPs predicted overall survival.

Conclusions

Polymorphisms of solute carriers’ may be useful to predict rapid response to irinotecan plus fluoropyrimidine and PFS in mCRC patients.

Trial Registry

ClinicalTrials.gov NCT01282658 http://www.clinicaltrials.gov/ct2/show/NCT01282658  相似文献   

8.
Single nucleotide polymorphisms (SNPs) play a prominent role in modern genetics. Current genotyping technologies such as Sequenom iPLEX, ABI TaqMan and KBioscience KASPar made the genotyping of huge SNP sets in large populations straightforward and allow the generation of hundreds of thousands of genotypes even in medium sized labs. While data generation is straightforward, the subsequent data conversion, storage and quality control steps are time-consuming, error-prone and require extensive bioinformatic support. In order to ease this tedious process, we developed SNPflow. SNPflow is a lightweight, intuitive and easily deployable application, which processes genotype data from Sequenom MassARRAY (iPLEX) and ABI 7900HT (TaqMan, KASPar) systems and is extendible to other genotyping methods as well. SNPflow automatically converts the raw output files to ready-to-use genotype lists, calculates all standard quality control values such as call rate, expected and real amount of replicates, minor allele frequency, absolute number of discordant replicates, discordance rate and the p-value of the HWE test, checks the plausibility of the observed genotype frequencies by comparing them to HapMap/1000-Genomes, provides a module for the processing of SNPs, which allow sex determination for DNA quality control purposes and, finally, stores all data in a relational database. SNPflow runs on all common operating systems and comes as both stand-alone version and multi-user version for laboratory-wide use. The software, a user manual, screenshots and a screencast illustrating the main features are available at http://genepi-snpflow.i-med.ac.at.  相似文献   

9.
10.
An international effort is underway to generate a comprehensive haplotype map (HapMap) of the human genome represented by an estimated 300000 to 1 million ‘tag’ single nucleotide polymorphisms (SNPs). Our analysis indicates that the current human SNP map is not sufficiently dense to support the HapMap project. For example, 24.6% of the genome currently lacks SNPs at the minimal density and spacing that would be required to construct even a conservative tag SNP map containing 300 000 SNPs. In an effort to improve the human SNP map, we identified 140 696 additional SNP candidates using a new bioinformatics pipeline. Over 51 000 of these SNPs mapped to the largest gaps in the human SNP map, leading to significant improvements in these regions. Our SNPs will be immediately useful for the HapMap project, and will allow for the inclusion of many additional genomic intervals in the final HapMap. Nevertheless, our results also indicate that additional SNP discovery projects will be required both to define the haplotype architecture of the human genome and to construct comprehensive tag SNP maps that will be useful for genetic linkage studies in humans.  相似文献   

11.
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways.Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application.PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
This is a PLOS Computational Biology software article.
  相似文献   

12.
2SNP software package implements a new very fast scalable algorithm for haplotype inference based on genotype statistics collected only for pairs of SNPs. This software can be used for comparatively accurate phasing of large number of long genome sequences, e.g. obtained from DNA arrays. As an input 2SNP takes genotype matrix and outputs the corresponding haplotype matrix. On datasets across 79 regions from HapMap 2SNP is several orders of magnitude faster than GERBIL and PHASE while matching them in quality measured by the number of correctly phased genotypes, single-site and switching errors. For example, 2SNP requires 41 s on Pentium 4 2 Ghz processor to phase 30 genotypes with 1381 SNPs (ENm010.7p15:2 data from HapMap) versus GERBIL and PHASE requiring more than a week and admitting no less errors than 2SNP.  相似文献   

13.
Microarray-based enrichment of selected genomic loci is a powerful method for genome complexity reduction for next-generation sequencing. Since the vast majority of exons in vertebrate genomes are smaller than 150 nt, we explored the use of short fragment libraries (85–110 bp) to achieve higher enrichment specificity by reducing carryover and adverse effects of flanking intronic sequences. High enrichment specificity (60–75%) was obtained with a relative even base coverage. Up to 98% of the target-sequence was covered more than 20× at an average coverage depth of about 200×. To verify the accuracy of SNP/mutation detection, we evaluated 384 known non-reference SNPs in the targeted regions. At ∼200× average sequence coverage, we were able to survey 96.4% of 1.69 Mb of genomic sequence with only 4.2% false negative calls, mostly due to low coverage. Using the same settings, a total of 1197 novel candidate variants were detected. Verification experiments revealed only eight false positive calls, indicating an overall false positive rate of less than 1 per ∼200 000 bp. Taken together, short fragment libraries provide highly efficient and flexible enrichment of exonic targets and yield relatively even base coverage, which facilitates accurate SNP and mutation detection. Raw sequencing data, alignment files and called SNPs have been submitted into GEO database http://www.ncbi.nlm.nih.gov/geo/ with accession number GSE18542.  相似文献   

14.
15.
Multiple algorithms have been developed for the purpose of calling single nucleotide polymorphisms (SNPs) from Affymetrix microarrays. We extend and validate the algorithm CRLMM, which incorporates HapMap information within an empirical Bayes framework. We find CRLMM to be more accurate than the Affymetrix default programs (BRLMM and Birdseed). Also, we tie our call confidence metric to percent accuracy. We intend that our validation datasets and methods, refered to as SNPaffycomp, serve as standard benchmarks for future SNP calling algorithms.  相似文献   

16.
SNUFER is a software for the automatic localization and generation of tables used for the presentation of single nucleotide polymorphisms (SNPs). After input of a fasta file containing the sequences to be analyzed, a multiple sequence alignment is generated using ClustalW ran inside SNUFER. The ClustalW output file is then used to generate a table which displays the SNPs detected in the aligned sequences and their degree of similarity. This table can be exported to Microsoft Word, Microsoft Excel or as a single text file, permitting further editing for publication. The software was written using Delphi 7 for programming and FireBird 2.0 for sequence database management. It is freely available for noncommercial use and can be downloaded from http://www.heranza.com.br/bioinformatica2.htm.  相似文献   

17.

Background

Single nucleotide polymorphisms (SNPs) and small insertions or deletions (indels) are the most common type of polymorphisms and are frequently used for molecular marker development. Such markers have become very popular for all kinds of genetic analysis, including haplotype reconstruction. Haplotypes can be reconstructed for whole chromosomes but also for specific genes, based on the SNPs present. Haplotypes in the latter context represent the different alleles of a gene. The computational approach to SNP mining is becoming increasingly popular because of the continuously increasing number of sequences deposited in databases, which allows a more accurate identification of SNPs. Several software packages have been developed for SNP mining from databases. From these, QualitySNP is the only tool that combines SNP detection with the reconstruction of alleles, which results in a lower number of false positive SNPs and also works much faster than other programs. We have build a web-based SNP discovery and allele detection tool (HaploSNPer) based on QualitySNP.

Results

HaploSNPer is a flexible web-based tool for detecting SNPs and alleles in user-specified input sequences from both diploid and polyploid species. It includes BLAST for finding homologous sequences in public EST databases, CAP3 or PHRAP for aligning them, and QualitySNP for discovering reliable allelic sequences and SNPs. All possible and reliable alleles are detected by a mathematical algorithm using potential SNP information. Reliable SNPs are then identified based on the reconstructed alleles and on sequence redundancy.

Conclusion

Thorough testing of HaploSNPer (and the underlying QualitySNP algorithm) has shown that EST information alone is sufficient for the identification of alleles and that reliable SNPs can be found efficiently. Furthermore, HaploSNPer supplies a user friendly interface for visualization of SNP and alleles. HaploSNPer is available from http://www.bioinformatics.nl/tools/haplosnper/.  相似文献   

18.
Imputation-based association methods provide a powerful framework for testing untyped variants for association with phenotypes and for combining results from multiple studies that use different genotyping platforms. Here, we consider several issues that arise when applying these methods in practice, including: (i) factors affecting imputation accuracy, including choice of reference panel; (ii) the effects of imputation accuracy on power to detect associations; (iii) the relative merits of Bayesian and frequentist approaches to testing imputed genotypes for association with phenotype; and (iv) how to quickly and accurately compute Bayes factors for testing imputed SNPs. We find that imputation-based methods can be robust to imputation accuracy and can improve power to detect associations, even when average imputation accuracy is poor. We explain how ranking SNPs for association by a standard likelihood ratio test gives the same results as a Bayesian procedure that uses an unnatural prior assumption—specifically, that difficult-to-impute SNPs tend to have larger effects—and assess the power gained from using a Bayesian approach that does not make this assumption. Within the Bayesian framework, we find that good approximations to a full analysis can be achieved by simply replacing unknown genotypes with a point estimate—their posterior mean. This approximation considerably reduces computational expense compared with published sampling-based approaches, and the methods we present are practical on a genome-wide scale with very modest computational resources (e.g., a single desktop computer). The approximation also facilitates combining information across studies, using only summary data for each SNP. Methods discussed here are implemented in the software package BIMBAM, which is available from http://stephenslab.uchicago.edu/software.html.  相似文献   

19.

Background

In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information.

Results

Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion.

Conclusions

This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.  相似文献   

20.
In this data paper, Bird tracking - GPS tracking of Lesser Black-backed Gulls and Herring Gulls breeding at the southern North Sea coast is described, a species occurrence dataset published by the Research Institute for Nature and Forest (INBO). The dataset (version 5.5) contains close to 2.5 million occurrences, recorded by 101 GPS trackers mounted on 75 Lesser Black-backed Gulls and 26 Herring Gulls breeding at the Belgian and Dutch coast. The trackers were developed by the University of Amsterdam Bird Tracking System (UvA-BiTS, http://www.uva-bits.nl). These automatically record and transmit bird movements, which allows us and others to study their habitat use and migration behaviour in great detail. Our bird tracking network is operational since 2013. It is funded for LifeWatch by the Hercules Foundation and maintained in collaboration with UvA-BiTS and the Flanders Marine Institute (VLIZ). The recorded data are periodically released in bulk as open data (http://dataset.inbo.be/bird-tracking-gull-occurrences), and are also accessible through CartoDB and the Global Biodiversity Information Facility (GBIF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号