首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Methyl-d-aspartate (NMDA) receptors are expressed at excitatory synapses throughout the brain and are essential for neuronal development and synaptic plasticity. Functional NMDA receptors are tetramers, typically composed of NR1 and NR2 subunits (NR2A–D). NR2A and NR2B are expressed in the forebrain and are thought to assemble as diheteromers (NR1/NR2A, NR1/NR2B) and triheteromers (NR1/NR2A/NR2B). NR2A and NR2B contain cytosolic domains that regulate distinct postendocytic sorting events, with NR2A sorting predominantly into the degradation pathway, and NR2B preferentially trafficking through the recycling pathway. However, the interplay between these two subunits remains an open question. We have now developed a novel approach based on the dimeric feature of the α- and β-chains of the human major histocompatibility complex class II molecule. We created chimeras of α- and β-chains with the NR2A and NR2B C termini and evaluated endocytosis of dimers. Like chimeric proteins containing only a single NR2A or NR2B C-terminal domain, major histocompatibility complex class II-NR2A homodimers sort predominantly to late endosomes, whereas NR2B homodimers traffic to recycling endosomes. Interestingly, NR2A/NR2B heterodimers traffic preferentially through the recycling pathway, and NR2B is dominant in regulating dimer trafficking in both heterologous cells and neurons. In addition, the recycling of NR2B-containing NMDARs in wild-type neurons is not significantly different from NR2A−/− neurons. These data support a dominant role for NR2B in regulating the trafficking of triheteromeric NMDARs in vivo. Furthermore, our molecular approach allows for the direct and selective evaluation of dimeric assemblies and can be used to define dominant trafficking domains in other multisubunit protein complexes.  相似文献   

2.
Functional positive cooperative activation of the extracellular calcium ([Ca2+]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca2+]o or amino acids elicits intracellular Ca2+ ([Ca2+]i) oscillations. Here, we report the central role of predicted Ca2+-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca2+-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca2+]o. Next, we identify an adjacent l-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca2+]o and l-Phe in eliciting CaSR-mediated [Ca2+]i oscillations. The heterocommunication between Ca2+ and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca2+]o signaling by positively impacting multiple [Ca2+]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca2+]o and amino acids into intracellular signaling events.  相似文献   

3.
We have characterized the Bacillus subtilis homologs of fructoselysine 6-kinase and fructoselysine-6-phosphate deglycase, two enzymes that specifically metabolize the Amadori compound fructose-epsilon-lysine in Escherichia coli. The B. subtilis enzymes also catalyzed the phosphorylation of fructosamines to fructosamine 6-phosphates (YurL) and the conversion of the latter to glucose 6-phosphate and a free amino acid (YurP). However, their specificity was totally different from that of the E. coli enzymes, since they acted on fructoseglycine, fructosevaline (YurL) or their 6-phosphoderivatives (YurP) with more than 30-fold higher catalytic efficiencies than on fructose-alpha-lysine (6-phosphate). These enzymes are therefore involved in the metabolism of alpha-glycated amino acids.  相似文献   

4.
5.
We have determined the structure of a new form of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase penicillin-binding protein 2 from the pathogen Staphylococcus aureus. We observe several previously unstructured regions of the GT substrate-binding pockets, including a π-bulge in the outer helix that may be responsible for the conformational flexibility of active-site motifs required for transfer of product to the donor binding site during processive rounds of peptidoglycan polymerization. The identification of a β-hairpin in the usually unstructured region of the fold shares local structural homology to that of an exomuramidase, heightening comparisons between this biosynthetic enzyme and lytic peptidoglycan transglycosylases. This new form also shows remarkable interdomain flexibility, causing the linker region of the fold to project into the GT active site. This self-interaction may have significant consequences for the regulation of polymerization activity. The derived information is used to build a catalytic model of both donor and acceptor glycolipid substrates.  相似文献   

6.
Wang Z  Xie W  Chi F  Li C 《FEBS letters》2005,579(7):1683-1687
Although non-specific lipid transfer proteins (nsLTPs) are widely present in plants, their functions and regulations have not been fully understood. In this report, Arabidopsis nsLTP1 was cloned and expressed to investigate its binding to calmodulin (CaM). Gel overlay assays revealed that recombinant nsLTP1 bound to CaM in a calcium-independent manner. The association of nsLTP1 and CaM was corroborated using CaM-Sepharose beads to specifically isolate recombinant nsLTP1 from crude bacterial lysate. The CaM-binding site was mapped in nsLTP1 to the region of 69-80 amino acids. This region is highly conserved among plant nsLTPs, implicating that nsLTPs are a new family of CaM-binding proteins whose functions may be mediated by CaM signaling.  相似文献   

7.
In route to a physical study aimed at understanding lipids and proteins sorting in cells, we designed a rhodamin-labelled biotinylated phosphatidylethanolamine (PE), as a useful and easy-attainable lipid double probe. The target compound was successfully engaged in preliminary physical experiments.  相似文献   

8.
N-acylethanolamines (NAEs) are endogenous lipid-based signaling molecules best known for their role in the endocannabinoid system in mammals, but they are also known to play roles in signaling pathways in plants. The regulation of NAEs in vivo is partly accomplished by the enzyme fatty acid amide hydrolase (FAAH), which hydrolyses NAEs to ethanolamine and their corresponding fatty acid. Inhibition of FAAH has been shown to increase the levels of NAEs in vivo and to produce desirable phenotypes. This has led to the development of pharmaceutical-based therapies for a variety of conditions targeting FAAH. Recently, our group identified a functional FAAH homolog in Dictyostelium discoideum, leading to our hypothesis that D. discoideum also possesses NAEs. In this study, we provide a further characterization of FAAH and identify NAEs in D. discoideum for the first time. We also demonstrate the ability to modulate their levels in vivo through the use of a semispecific FAAH inhibitor and confirm that these NAEs are FAAH substrates through in vitro studies. We believe the demonstration of the in vivo modulation of NAE levels suggests that D. discoideum could be a good simple model organism in which to study NAE-mediated signaling.  相似文献   

9.
The sinusoidal locomotion of Caenorhabditis elegans requires synchronous activities of neighboring body wall muscle cells. However, it is unknown whether the synchrony results from muscle electrical coupling or neural inputs. We analyzed the effects of mutating gap junction proteins and blocking neuromuscular transmission on the synchrony of action potentials (APs) and Ca2+ transients among neighboring body wall muscle cells. In wild-type worms, the percentage of synchronous APs between two neighboring cells varied depending on the anatomical relationship and junctional conductance (Gj) between them, and Ca2+ transients were synchronous among neighboring muscle cells. Compared with the wild type, knock-out of the gap junction gene unc-9 resulted in greatly reduced coupling coefficient and asynchronous APs and Ca2+ transients. Inhibition of unc-9 expression specifically in muscle by RNAi also reduced the synchrony of APs and Ca2+ transients, whereas expression of wild-type UNC-9 specifically in muscle rescued the synchrony defect. Loss of the stomatin-like protein UNC-1, which is a regulator of UNC-9-based gap junctions, similarly impaired muscle synchrony as unc-9 mutant did. The blockade of muscle ionotropic acetylcholine receptors by (+)-tubocurarine decreased the frequencies of APs and Ca2+ transients, whereas blockade of muscle GABAA receptors by gabazine had opposite effects. However, both APs and Ca2+ transients remained synchronous after the application of (+)-tubocurarine and/or gabazine. These observations suggest that gap junctions in C. elegans body wall muscle cells are responsible for synchronizing muscle APs and Ca2+ transients.  相似文献   

10.
The cockroach ventral nerve cord preparation is a tractable system for neuroethology experiments, neural network modeling, and testing the physiological effects of insecticides. This article describes the scope of cockroach sensory modalities that can be used to assay how an insect nervous system responds to environmental perturbations. Emphasis here is on the escape behavior mediated by cerci to giant fiber transmission in Periplaneta americana. This in situ preparation requires only moderate dissecting skill and electrophysiological expertise to generate reproducible recordings of neuronal activity. Peptides or other chemical reagents can then be applied directly to the nervous system in solution with the physiological saline. Insecticides could also be administered prior to dissection and the escape circuit can serve as a proxy for the excitable state of the central nervous system. In this context the assays described herein would also be useful to researchers interested in limb regeneration and the evolution of nervous system development for which P. americana is an established model organism.  相似文献   

11.
Little is known about the protein complexes required for microRNA formation and function. Here we used native gel electrophoresis to identify miRNA ribonucleoprotein complexes (miRNPs) in Caenorhabditis elegans. Our data reveal multiple distinct miRNPs that assemble on the let-7 miRNA in vitro. The formation of these complexes is affected but not abolished by alg-1 or alg-2 null mutations. The largest complex (M*) with an estimated molecular mass of >669 kDa cofractionates with the known RISC factors ALG-1, VIG-1, and TSN-1. The M* complex and two complexes, M3 and M4, with similar molecular weights of ~500 kDa, also assemble on all other miRNAs used in our experiments. Two smaller complexes, M1 (~160 kDa) and M2 (~250 kDa), assemble on the members of the let-7 miRNAs family but not lin-4 or mir-234, and their formation is highly dependent on specific sequences in the 5′ seed region of let-7. Moreover, an unidentified protein, p40, which only appears in the M1 and M2 complexes, was detected by UV triggered cross-linking to let-7 but not to lin-4. The cross-linking of p40 to let-7 is also dependent on the let-7 sequence. Another unidentified protein, p13, is detected in all let-7 binding complexes and lin-4 cross-linked products. Our data suggest that besides being present in certain large miRNPs with sizes similar to reported RISC, the let-7 miRNA also assembles with specific binding proteins and forms distinct small complexes.  相似文献   

12.
The cell wall of Corynebacterium glutamicum contains the cation-selective channel (porin) PorAC.glut and the anion-selective channel PorBC.glut for the passage of hydrophilic solutes. Lipid bilayer experiments with organic solvent extracts of whole C. glutamicum cells cultivated in minimal medium suggested that also another cation-selective channel-forming protein, named PorHC.glut, is present in C. glutamicum. The protein was purified to homogeneity by fast-protein liquid chromatography across a HiTrap-Q column. The pure protein had an apparent molecular mass of about 12 kDa on SDS-PAGE. Western blot analysis suggested that the cell wall channel is presumably formed by protein oligomers. The purified protein forms cation-selective channels with an average single-channel conductance of about 2.5 nS in 1 M KCl in the lipid bilayer assay. The PorHC.glut protein was partially sequenced, and based on the resulting amino acid sequence, the corresponding gene, designated as porHC.glut, was identified in the published genome sequence of C. glutamicum ATCC13032. PorHC.glut contains only the inducer methionine but no N-terminal extension, which suggests that the export and assembly of the protein follow a yet unknown pathway. PorHC.glut is coded in the bacterial chromosome by a gene that is localized in the vicinity of porAC.glut, within a putative operon of 13 genes. RT-PCR revealed that both porins are cotranscribed. They coexist according to immunological detection experiments in the cell wall of C. glutamicum together with PorBC.glut and PorCC.glut.  相似文献   

13.
Respirometric profiling of isolated mitochondria is commonly used to investigate electron transport chain function. We describe a method for obtaining samples of human Vastus lateralis, isolating mitochondria from minimal amounts of skeletal muscle tissue, and plate based respirometric profiling using an extracellular flux (XF) analyzer. Comparison of respirometric profiles obtained using 1.0, 2.5 and 5.0 μg of mitochondria indicate that 1.0 μg is sufficient to measure respiration and that 5.0 μg provides most consistent results based on comparison of standard errors. Western blot analysis of isolated mitochondria for mitochondrial marker COX IV and non-mitochondrial tissue marker GAPDH indicate that there is limited non-mitochondrial contamination using this protocol. The ability to study mitochondrial respirometry in as little as 20 mg of muscle tissue allows users to utilize individual biopsies for multiple study endpoints in clinical research projects.  相似文献   

14.
alpha1,2-linked fucose can be found on xyloglucans which are the main hemicellulose compounds of dicotyledons. The fucosylated nonasaccharide XXFG derived from xyloglucans plays a role in cell signaling and is active at nanomolar concentrations. The plant enzyme acting on this alpha1,2-linked fucose residues has been previously called fucosidase II; here we report on the molecular identification of a gene from Arabidopsis thaliana (At4g34260 hereby designed AtFuc95A) encoding this enzyme. Analysis of the predicted protein composed of 843 amino acids shows that the enzyme belongs to the glycoside hydrolase family 95 and has homologous sequences in different monocotyledons and dicotyledons. The enzyme was expressed recombinantly in Nicotiana bentamiana, a band was visible by Coomassie blue staining and its identity with the alpha1,2-fucosidase was assessed by an antibody raised against a peptide from this enzyme as well as by peptide-mass mapping. The recombinant AtFuc95A is active towards 2-fucosyllactose with a Km of 0.65 mM, a specific activity of 110 mU/mg and a pH optimum of 5 but does not cleave alpha1,3, alpha1,4 or alpha1,6-fucose containing oligosaccharides and p-nitrophenyl-fucose. The recombinant enzyme is able to convert the xyloglucan fragment XXFG to XXLG, and is also active against xyloglucan polymers with a Km value for fucose residues of 1.5mM and a specific activity of 36 mU/mg. It is proposed that the AtFuc95A gene has a role in xyloglucan metabolism.  相似文献   

15.
P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2X(A)R knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen.  相似文献   

16.
Solid-state NMR has been used to examine the binding of N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin, a fluorinated analogue of oritavancin, to isolated protoplast membranes and whole-cell sucrose-stabilized protoplasts of Staphylococcus aureus, grown in media containing [1-13C]glycine and l-[?-15N]lysine. Rotational-echo double-resonance NMR was used to characterize the binding by estimating internuclear distances from 19F of oritavancin to 13C and 15N labels of the membrane-associated peptidoglycan and to the 31P of the phospholipid bilayer of the membrane. In isolated protoplast membranes, both with and without 1 M sucrose added to the buffer, the nascent peptidoglycan was extended away from the membrane surface and the oritavancin hydrophobic side chain was buried deep in the exposed lipid bilayer. However, there was no N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin binding to intact sucrose-stabilized protoplasts, even though the drug bound normally to the cell walls of whole cells of S. aureus in the presence of 1 M sucrose. As shown by the proximity of peptidoglycan-bridge 13C labels to phosphate 31P, the nascent peptidoglycan of the intact protoplasts was confined to the membrane surface.  相似文献   

17.
18.
Zeng L  Li T  Xu DC  Liu J  Mao G  Cui MZ  Fu X  Xu X 《The Journal of biological chemistry》2012,287(34):29125-29133
Cells undergo apoptosis through two major pathways, the extrinsic pathway (death receptor pathway) and the intrinsic pathway (the mitochondrial pathway). These two pathways can be linked by caspase-8-activated truncated Bid formation. Very recently, death receptor 6 (DR6) was shown to be involved in the neurodegeneration observed in Alzheimer disease. DR6, also known as TNFRSF21, is a relatively new member of the death receptor family, and it was found that DR6 induces apoptosis when it is overexpressed. However, how the death signal mediated by DR6 is transduced intracellularly is not known. To this end, we have examined the roles of caspases, apoptogenic mitochondrial factor cytochrome c, and the Bcl-2 family proteins in DR6-induced apoptosis. Our data demonstrated that Bax translocation is absolutely required for DR6-induced apoptosis. On the other hand, inhibition of caspase-8 and knockdown of Bid have no effect on DR6-induced apoptosis. Our results strongly suggest that DR6-induced apoptosis occurs through a new pathway that is different from the type I and type II pathways through interacting with Bax.  相似文献   

19.
Access to glycopeptides with C-terminal thioester functionality is essential for the synthesis of large glycopeptides and glycoproteins through the use of native chemical ligation. Toward that end, we have developed a concise method for the synthesis of a glycopeptide thioester having an intact complex-type dibranched disialyl-oligosaccharide. The synthesis employed a coupling reaction between benzylthiol and a free carboxylic acid at the C-terminus of a glycopeptide in which the peptide side chains are protected. After construction of glycopeptide on the HMPB-PEGA resin through the Fmoc-strategy, the protected glycopeptide was released upon treatment with acetic acid/trifluoroethanol and then the C-terminal carboxylic acid was coupled with benzylthiol at -20 degrees C in DMF. For this coupling, PyBOP/DIPEA was found to be the best for the formation of the thioester, while avoiding racemization. Finally, the protecting groups were removed in good yield with 95% TFA, thus affording a glycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide.  相似文献   

20.
Kato-Yamada Y 《FEBS letters》2005,579(30):6875-6878
Previously, we demonstrated ATP binding to the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus PS3 [Kato-Yamada Y., Yoshida M. (2003) J. Biol. Chem. 278, 36013]. However, whether it is a general feature of the epsilon subunit from other sources is yet unclear. Here, using a sensitive method to detect weak interactions between fluorescently labeled epsilon subunit and nucleotide, it was shown that the epsilon subunit of F1-ATPase from Bacillus subtilis also bound ATP. The dissociation constant for ATP binding at room temperature was calculated to be 2 mM, which may be suitable for sensing cellular ATP concentration in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号