首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CCR6 is the receptor of chemokine CCL20. In the present study, we demonstrated that the surface expression of CCR6 was enhanced on the human HCC cell lines (HuH7, PLC/PRF/5, and HepG2) especially on HuH7 cells, but not on HLE or HLF cells. These HCC cell lines (HuH7, PLC/PRF/5, and HepG2) especially the HuH7 cells secreted a significant amount of CCL20 spontaneously, whereas HLE or HLF did not. Stimulation by CCL20 up-regulated the mRNA expression of CCR6 in HuH7 cells and significantly enhanced the growth of HuH7 cells. CCL20-stimulated growth of HuH7 cells was abrogated by the inhibition of downstream signal transduction pathway mediated by p44/42 MAPK, but not by p38 MAPK or SAPK/JNK. CCR6 expression in human HCC tissues was confirmed by RT-PCR. These results indicate that the growth of a proportion of human HCC cells may be mediated by CCL20-CCR6 axis, like HuH7 cells, in an autocrine or paracrine manner.  相似文献   

3.
Recent studies demonstrate that cyclooxygenase-2 (COX-2) expression is frequently associated with lymph node metastasis. However, the mechanism by which COX-2 increases the invasion of cancer cells to lymph node is unclear. CCR7 is a chemokine receptor that plays important roles in the mediation of migration of leukocytes and dendritic cells toward lymphatic endothelial cells (LECs) that express receptor ligand CCL21. We found that treatment of prostaglandin E(2) or ectopic expression of COX-2 in MCF-7 cells up-regulated CCR7 expression. On the contrary, knockdown of COX-2 by small hairpin RNA reduced CCR7 in COX-2-overexpressing MDA-MB-231 cells. Interaction of CCR7 and CCL21 was important for the migration of breast cancer cells toward LECs because antibodies against these two molecules inhibited the migration. We also found that COX-2 increased CCR7 expression via the EP2 and EP4 receptor in breast cancer cells. EP2 and EP4 agonists stimulated CCR7 in MCF-7 cells, whereas antagonists or small hairpin RNA of EP2 and EP4 attenuated CCR7 in MDA-MB-231 cells. Protein kinase A and AKT kinase were involved in COX-2-induced CCR7. Pathological analysis demonstrated that COX-2 overexpression was associated with CCR7, EP2, and EP4 expressions in breast tumor tissues. In addition, CCR7 expression in COX-2-overexpressing tumors was significantly correlated with lymph node metastasis. Collectively, we suggest that CCR7 is a down-stream target for COX-2 to enhance the migration of breast cancer cells toward LECs and to promote lymphatic invasion.  相似文献   

4.

Background

Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family that is associated with the disease status and outcomes of osteoarthritis (OA). Here, we investigated the intracellular signaling pathways involved in CCL2-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human OA synovial fibroblasts (OASFs).

Methodology/Principal Findings

Stimulation of OASFs with CCL2 induced VCAM-1 expression. CCL2-mediated VCAM-1 expression was attenuated by CCR2 inhibitor (RS102895), PKCδ inhibitor (rottlerin), p38MAPK inhibitor (SB203580), and AP-1 inhibitors (curcumin and tanshinone IIA). Stimulation of cells with CCL2 increased PKCδ and p38MAPK activation. Treatment of OASFs with CCL2 also increased the c-Jun phosphorylation and c-Jun binding to the AP-1 element on the VCAM-1 promoter. Moreover, CCL2-mediated CCR2, PKCδ, p38MAPK, and AP-1 pathway promoted the adhesion of monocytes to the OASFs monolayer.

Conclusions/Significance

Our results suggest that CCL2 increases VCAM-1 expression in human OASFs via the CCR2, PKCδ, p38MAPK, c-Jun, and AP-1 signaling pathway. The CCL2-induced VCAM-1 expression promoted monocytes adhesion to human OASFs.  相似文献   

5.
6.
From the site of transmission at mucosal surfaces, HIV is thought to be transported by DCs to lymphoid tissues. To initiate migration, HIV needs to activate DCs. This activation, reflected by intra- and extracellular changes in cell phenotype, is investigated in the present study. In two-thirds of the donors, R5- and X4-tropic HIV-1 strains induced partial up-regulation of DC activation markers such as CD83 and CD86. In addition, CCR7 expression was increased. HIV-1 initiated a transient phosphorylation of p44/p42 ERK1/2 in iDCs, whereas p38 MAPK was activated in both iDCs and mDCs. Up-regulation of CD83 and CD86 on DCs was blocked when cells were incubated with specific p38 MAPK inhibitors before HIV-1-addition. CCR7 expression induced by HIV-1 was sufficient to initiate migration of DCs in the presence of secondary lymphoid tissue chemokine (CCL21) and MIP-3beta (CCL19). Preincubation of DCs with a p38 MAPK inhibitor blocked CCR7-dependent DC migration. Migrating DCs were able to induce infection of autologous unstimulated PBLs in the Transwell system. These data indicate that HIV-1 triggers a cell-specific signaling machinery, thereby manipulating DCs to migrate along a chemokine gradient, which results in productive infection of nonstimulated CD4(+) cells.  相似文献   

7.
Chiu HY  Sun KH  Chen SY  Wang HH  Lee MY  Tsou YC  Jwo SC  Sun GH  Tang SJ 《Cytokine》2012,59(2):423-432
The amount of monocyte chemoattractant protein-1 (MCP-1/CCL2) produced by a transitional cell carcinoma is directly correlated with high recurrence and poor prognosis in bladder cancer. However, the mechanisms underlying the effects of CCL2 on tumor progression remain unexplored. To investigate the role played by CCL2, we examined cell migration in various bladder cancer cell lines. We found that high-grade cancer cells expressing high levels of CCL2 showed more migration activity than low-grade bladder cancer cells expressing low levels of the chemokine. Although the activation of CCL2/CCR2 signals did not appreciably affect cell growth, it mediated cell migration and invasion via the activation of protein kinase C and phosphorylation of tyrosine in paxillin. Blocking CCL2 and CCR2 with small hairpin RNA (shCCL2) or a specific inhibitor reduced CCL2/CCR2-mediated cell migration. The antagonist of CCR2 promoted the survival of mice bearing MBT2 bladder cancer cells, and CCL2-depleted cells showed low tumorigenicity compared with shGFP cells. In addition to observing high-levels of CCL2 in high-grade human bladder cancer cells, we showed that the CCL2/CCR2 signaling pathway mediated migratory and invasive activity, whereas blocking the pathway decreased migration and invasion. In conclusion, high levels of CCL2 expressed in bladder cancer mediates tumor invasion and is involved with advanced tumorigenesis. Our findings suggest that this CCL2/CCR2 pathway is a potential candidate for the attenuation of bladder cancer metastases.  相似文献   

8.
The COOH-terminal fragment of procollagen type I (C3) is produced in tissues with high synthesis of collagen I, such as in breast cancer stroma and in bone. We previously demonstrated that C3 is chemoattractant for breast carcinoma and endothelial cells, and that in tumor cells it induces expression and activation of metalloproteinases (MMP) -2 and -9. Here we demonstrate that C3 induces expression of vascular-endothelial growth factor (VEGF) and of CXCR4, the receptor of the CXCL12/SDF-1 chemokine, in MDA MB 231 breast cancer cells. We show that the changes in gene expression and motility induced by C3 occur in a timely succession and are mediated by multiple and different signaling pathways. C3 induces early phosphorylation of p38/MAPK. Induction of VEGF expression requires continual activity of p38/MAPK and of Protein Kinase C (PKC). Pro-MMP-2 and -9 are induced through a signaling pathway involving G0alpha.i protein, and cell migration requires the activity of a combination of these signaling pathways. Our results suggest that C3 acts as a stromal-derived, cancer-promoting agent active in inducing the migratory phenotype and the survival of cancer cells and determining timely changes in their gene expression that establish conditions promoting tumor angiogenesis and invasion.  相似文献   

9.
CCL3 (MIP-1alpha), a prototype of CC chemokines, is a potent chemoattractant toward human neutrophils pre-treated with GM-CSF for 15 min. GM-CSF-treated neutrophils migrate also to the selective CCR5 agonist CCL4 (MIP-1beta). CCL3- and CCL4-triggered migration of GM-CSF-primed neutrophils was inhibited by the CCR5 antagonist TAK-779. Accordingly, freshly isolated neutrophils express CCR5. Extracellular signal-regulated kinases (ERK)-1/2 and p38 mitogen-activated protein kinase (MAPK) inhibitors blocked CCL3-induced migration of GM-CSF-primed neutrophils. When the activation of ERK-1/2 and p38 MAPK by CCL3 and the classical neutrophilic chemokine CXCL8 (IL-8) were compared, both the chemokines were capable of activating p38 MAPK. On the contrary, whereas both ERK-1 and ERK-2 were activated by CXCL8, no ERK-1 band was detectable after CCL3 triggering. Finally, neutrophil pre-treatment with GM-CSF activated both ERK-1 and ERK-2. This suggests that by activating ERK-1, GM-CSF renders neutrophils rapidly responsive to CCL3 stimulation throughout CCR5 which is constitutively expressed on the cell surface.  相似文献   

10.
Recruitment of effector T cells to sites of infection or inflammation is essential for an effective adaptive immune response. The chemokine CCL5 (RANTES) activates its cognate receptor, CCR5, to initiate cellular functions, including chemotaxis. In earlier studies, we reported that CCL5-induced CCR5 signaling activates the mTOR/4E-BP1 pathway to directly modulate mRNA translation. Specifically, CCL5-mediated mTOR activation contributes to T cell chemotaxis by initiating the synthesis of chemotaxis-related proteins. Up-regulation of chemotaxis-related proteins may prime T cells for efficient migration. It is now clear that mTOR is also a central regulator of nutrient sensing and glycolysis. Herein we describe a role for CCL5-mediated glucose uptake and ATP accumulation to meet the energy demands of chemotaxis in activated T cells. We provide evidence that CCL5 is able to induce glucose uptake in an mTOR-dependent manner. CCL5 treatment of ex vivo activated human CD3(+) T cells also induced the activation of the nutrient-sensing kinase AMPK and downstream substrates ACC-1, PFKFB-2, and GSK-3β. Using 2-deoxy-d-glucose, an inhibitor of glucose uptake, and compound C, an inhibitor of AMPK, experimental data are presented that demonstrate that CCL5-mediated T cell chemotaxis is dependent on glucose, as these inhibitors inhibit CCL5-mediated chemotaxis in a dose-dependent manner. Altogether, these findings suggest that both glycolysis and AMPK signaling are required for efficient T cell migration in response to CCL5. These studies extend the role of CCL5 mediated CCR5 signaling beyond lymphocyte chemotaxis and demonstrate a role for chemokines in promoting glucose uptake and ATP production to match energy demands of migration.  相似文献   

11.
For head and neck squamous cell carcinoma (HNSCC), the local invasion and distant metastasis represent the predominant causes of mortality. Targeted inhibition of chemokines and their receptors is an ongoing antitumor strategy established on the crucial roles of chemokines in cancer invasion and metastasis. Herein, we showed that C-C motif chemokine ligand 2 (CCL2)- C-C motif chemokine receptor 4 (CCR4) signaling, but not the CCL2- C-C motif chemokine receptor 2 (CCR2) axis, induces the formation of the vav guanine nucleotide exchange factor 2 (Vav2)- Rac family small GTPase 1 (Rac1) complex to activate the phosphorylation of myosin light chain (MLC), which is involved in the regulation of cell motility and cancer metastasis. We identified that targeting CCR4 could effectively interrupt the activation of HNSCC invasion and metastasis induced by CCL2 without the promoting cancer relapse observed during the subsequent withdrawal period. All current findings suggested that CCL2-CCR4-Vav2-Rac1-p-MLC signaling plays an essential role in cell migration and cancer metastasis of HNSCC, and CCR4 may serve as a new potential molecular target for HNSCC therapy.Subject terms: Head and neck cancer, Cell migration, Cancer therapy  相似文献   

12.
Breast cancers that overexpress the receptor tyrosine kinase ErbB2/HER2/Neu result in poor patient outcome because of extensive metastatic progression. Herein, we delineate a molecular mechanism that may govern this malignant phenotype. ErbB2 induction of migration requires activation of the small GTPases Rac1 and Cdc42. The ability of ErbB2 to activate these small GTPases necessitated expression of p120 catenin, which is itself up-regulated by signaling through ErbB2 and the tyrosine kinase Src. Silencing p120 in ErbB2-dependent breast cancer cell lines dramatically inhibited migration and invasion as well as activation of Rac1 and Cdc42. In contrast, overexpression of constitutively active mutants of these GTPases reversed the effects of p120 silencing. Lastly, ectopic expression of p120 promoted migration and invasion and potentiated metastatic progression of a weakly metastatic, ErbB2-dependent breast cancer cell line. These results suggest that p120 acts as an obligate intermediate between ErbB2 and Rac1/Cdc42 to modulate the metastatic potential of breast cancer cells.  相似文献   

13.
C–C chemokine receptor 7 (CCR7) and its ligands CCL19 contributes to the directional migration of certain cancer cell lines, but its role in the migration of BMSCs remains vague. The aim of this study was to determine the possible interaction between CCL19-induced conditions and matrix metalloproteinases-9 (MMP9) expression in BMSCs. Cell migration using Transwell assay indicated that activation of CCR7 by its specific ligand, exogenous chemokine ligand 19 (CCL19), was associated with a significant linear increase. Western blot and real-time PCR indicated that CCL19/CCR7 significantly upregulated expression of MMP9, which is related to metastasis-associated genes. The CCL19/CCR7 interaction significantly enhanced phosphorylation of Akt, as measured by Western blot. P-Akt and MMP9 protein expression exhibited a time-dependent pattern, and the peak was at 48 h. LY294002 significantly abolished the effects of exogenous CCL19. These results suggest that CCL19/CCR7 contributes to the migration of BMSCs by upregulating MMP9 potentially via the PI3K/Akt pathway.  相似文献   

14.
Chronic inflammation is a hallmark of cancer. Inflammatory chemokines, such as C-C chemokine ligand 2 (CCL2), are often present in tumors but their roles in cancer initiation and maintenance are not clear. Here we report that CCL2 promotes mammary carcinoma development in a clinically relevant murine model of breast cancer. Targeted disruption of Ccl2 slowed the growth of activated Her2/neu-driven mammary tumors and prolonged host survival. Disruption of Ccl2 was associated with a decrease in the development and mobilization of endothelial precursor cells (EPCs) which can contribute to tumor neovascularization. In contrast, disruption of Ccr2, which encodes CCL2’s sole signaling receptor, accelerated tumor development, shortened host survival, and mobilized EPCs. However, pharmacological inhibition of CCR2 phenocopied Ccl2 disruption rather than Ccr2 disruption, suggesting that the Ccr2-/- phenotype is a consequence of unanticipated alterations not linked to intact CCL2/CCR2 signaling. Consistent with this explanation, Ccr2-/- monocytes are more divergent from wild type monocytes than Ccl2-/- monocytes in their expression of genes involved in key developmental and functional pathways. Taken together, our data suggest a tumor-promoting role for CCL2 acting through CCR2 on the tumor microenvironment and support the targeting of this chemokine/receptor pair in breast cancer.  相似文献   

15.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   

16.
17.
18.
As an important chemokine receptor, the role of CCR4 in the progression of bladder cancer (BC) remains unknown. In this study, we have shown that CCR4 expression was upregulated in bladder carcinoma tissues compared with adjacent nontumor tissues. Kaplan-Meier survival analysis revealed that CCR4 expression was an independent prognostic risk factor in BC patients, and the addition of CCL17 induced CCR4 production and promoted migration and invasion of BC cells. In addition, CCR4 knockdown significantly attenuated the migratory and invasive capabilities of BC cells. Mechanistically, CCL17-CCR4 axis is involved in ERK1/2 signaling and could mediate the migration and invasion of BC cells by regulating MMP13 activation. This study suggests that CCR4 might represent a promising prognostic biomarker and a potential therapeutic option for BC.  相似文献   

19.

Objectives

Autocrine and paracrine chemokine/chemokine receptor-based interactions promote non-small-cell-lung-cancer (NSCLC) carcinogenesis. CCL20/CCR6 interactions are involved in prostatic and colonic malignancy pathogenesis. The expression and function of CCL20/CCR6 and its related Th-17 type immune response in NSCLC is not yet defined. We sought to characterize the role of the CCL20/CCR6/IL-17 axis in NSCLC tumor growth.

Methods

A specialized histopathologist blindly assessed CCL20/CCR6 expression levels in 49 tissue samples of NSCLC patients operated in our department. Results were correlated to disease progression. Colony assays, ERK signaling and chemokine production were measured to assess cancer cell responsiveness to CCL20 and IL-17 stimulation.

Results

CCL20 was highly expressed in the majority (38/49, 77.5%) of tumor samples. Only a minority of samples (8/49, 16.5%) showed high CCR6 expression. High CCR6 expression was associated with a shorter disease-free survival (P = 0.008) and conferred a disease stage-independent 4.87-fold increased risk for disease recurrence (P = 0.0076, CI 95% 1.52–15.563). Cancerous cell colony-forming capacity was increased by CCL20 stimulation; this effect was dependent in part on ERK phosphorylation and signaling. IL-17 expression was detected in NSCLC; IL-17 potentiated the production of CCL20 by cancerous cells.

Conclusion

Our findings suggest that the CCL20/CCR6 axis promotes NSCLC disease progression. CCR6 is identified as a potential new prognostic marker and the CCL20/CCR6/IL-17 axis as a potential new therapeutic target. Larger scale studies are required to consolidate these observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号