首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and biophysical properties of lipid membranes are important for cellular functions in health and disease. In Alzheimer’s disease, the neuronal membrane is a target for toxic amyloid-β (Aβ). Melatonin is an important pineal gland hormone that has been shown to protect against Aβ toxicity in cellular and animal studies, but the molecular mechanism of this protection is not fully understood. Melatonin is a small membrane-active molecule that has been shown to interact with model lipid membranes and alter the membrane biophysical properties, such as membrane molecular order and dynamics. This effect of melatonin has been previously studied in simple model bilayers with one or two lipid components. To make it more relevant to neuronal membranes, we used a more complex ternary lipid mixture as our membrane model. In this study, we used 2H-NMR to investigate the effect of melatonin on the phase behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and cholesterol lipid membranes. We used deuterium-labeled POPC-d31 and DPPC-d62,separately to probe the changes in hydrocarbon chain order as a function of temperature and melatonin concentration. We find that POPC/DPPC/cholesterol at molar proportions of 3:3:2 is close to liquid-disordered/liquid-ordered phase separation and that melatonin can induce phase separation in these ternary mixtures by preferentially incorporating into the disordered phase and increasing its level of disorder. At 5 mol% melatonin, we observed phase separation in samples with POPC-d31, but not with DPPC-d62, whereas at 10 mol% melatonin, phase separation was observed in both samples with either POPC-d31 or DPPC-d62. These results indicate that melatonin can have a strong effect on membrane structure and physical properties, which may provide some clues to understanding how melatonin protects against Aβ, and that choice of chain perdeuteration is an important consideration from a technical point of view.  相似文献   

2.
Fluorescent proteins (FPs) have revolutionized cell biology by allowing genetic tagging of specific proteins inside living cells. In conjunction with Förster’s resonance energy transfer (FRET) measurements, FP-tagged proteins can be used to study protein-protein interactions and estimate distances between tagged proteins. FRET is mediated by weak Coulombic dipole-dipole coupling of donor and acceptor fluorophores that behave independently, with energy hopping discretely and incoherently between fluorophores. Stronger dipole-dipole coupling can mediate excitonic coupling in which excitation energy is distributed near instantaneously between coherently interacting excited states that behave as a single quantum entity. The interpretation of FP energy transfer measurements to estimate separation often assumes that donors and acceptors are very weakly coupled and therefore use a FRET mechanism. This assumption is considered reasonable as close fluorophore proximity, typically associated with strong excitonic coupling, is limited by the FP β-barrel structure. Furthermore, physiological temperatures promote rapid vibrational dephasing associated with a rapid decoherence of fluorophore-excited states. Recently, FP dephasing times that are 50 times slower than traditional organic fluorophores have been measured, raising the possibility that evolution has shaped FPs to allow stronger than expected coupling under physiological conditions. In this study, we test if excitonic coupling between FPs is possible at physiological temperatures. FRET and excitonic coupling can be distinguished by monitoring spectral changes associated with fluorophore dimerization. The weak coupling mediating FRET should not cause a change in fluorophore absorption, whereas strong excitonic coupling causes Davydov splitting. Circular dichroism spectroscopy revealed Davydov splitting when the yellow FP VenusA206 dimerizes, and a novel approach combining photon antibunching and fluorescence correlation spectroscopy was used to confirm that the two fluorophores in a VenusA206 homodimer behave as a single-photon emitter. We conclude that excitonic coupling between VenusA206 fluorophores is possible at physiological temperatures.  相似文献   

3.
Ras GTPases play a crucial role in signal transduction cascades involved in cell differentiation and proliferation, and membrane binding is essential for their proper function. To determine the influence of the nature of the lipid anchor motif and the difference between the active (GTP) and inactive (GDP) forms of N-Ras on partitioning and localization in the lipid membrane, five different N-Ras constructs with different lipid anchors and nucleotide loading (Far/Far (GDP), HD/Far (GDP), HD/HD (GDP), Far (GDP), and HD/Far (GppNHp)) were synthesized. Using the surface plasmon resonance technique, we were able to follow the insertion and dissociation process of the lipidated proteins into and out of model membranes consisting of pure liquid-ordered (lo) or liquid-disordered (ld) phase and a heterogeneous two-phase mixture, i.e., a raft mixture with lo + ld phase coexistence. In addition, we examined the influence of negatively charged headgroups and stored curvature elastic stress on the binding properties of the lipidated N-Ras proteins. In most cases, significant differences were found for the various anchor motifs. In general, N-Ras proteins insert preferentially into a fluidlike, rather than a rigid, ordered lipid bilayer environment. Electrostatic interactions with lipid headgroups or stored curvature elastic stress of the membrane seem to have no drastic effect on the binding and dissociation processes of the lipidated proteins. The monofarnesylated N-Ras exhibits generally the highest association rate and fastest dissociation process in fluidlike membranes. Double lipidation, especially including farnesylation, of the protein leads to drastically reduced initial binding rates but strong final association. The change in the nucleotide loading of the natural N-Ras HD/Far induces a slightly different binding and dissociation kinetics, as well as stability of association, and seems to influence the tendency to segregate laterally in the membrane plane. The GDP-bound inactive form of N-Ras with an HD/Far anchor shows stronger membrane association, which might be due to a more pronounced tendency to self-assemble in the membrane matrix than is seen with the active GTP-bound form.  相似文献   

4.
Magainin 2 belongs to the family of peptides, which interacts with the lipid membranes. The present work deals with the effect of this peptide on the mechanical properties of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine Giant Unilamellar Vesicle, characterized by the bending stiffness modulus. The bending elastic modulus is measured by Vesicle Fluctuation Analysis at biologically relevant pH and physiological buffer conditions and shows a dramatic decrease with increasing peptide concentration. The observed bilayer softening is interpreted in terms of a continuum model describing perturbations on the membrane organization. Our analysis suggests that the adsorbed peptides give rise to considerable local curvature disruptions of the membrane.  相似文献   

5.
6.
  1. Download : Download high-res image (76KB)
  2. Download : Download full-size image
Highlights
  • •Zero-length chemical cross-linking of APOA1 peptides in HDL.
  • •Cross-links match antiparallel isomers of APOA dimers in molecular modeling.
  • •Identical MS/MS spectra of native and synthetic cross-linked peptides.
  • •First biochemical evidence of LL5/5 and LL5/4 isomers in human HDL.
  相似文献   

7.
Stemler A 《Plant physiology》1980,65(6):1160-1165
High concentrations of both bicarbonate and formate inhibit photosynthetic O2 evolution at pH 8.0. At this pH, only 2.4% of the total dissolved carbon dioxide exists as CO2. At pH 7.3, where 11% of the total dissolved carbon dioxide exists as CO2, HCO3 no longer inhibits. While formate still inhibits O2 evolution at pH 7.3, its effect can be partially overcome if CO2 is also present. The rate of binding of added 14C-labeled inorganic carbon is nearly 10-fold more rapid when the internal pH of thylakoid membranes is at 6.0 than when it is at 7.8. These observations suggest that CO2, not HCO3, is initially bound to the photosystem II reaction center and that the location of the binding site is on the inside thylakoid surface. However, additional data presented here suggest that, after binding, CO2 is hydrated to HCO3 + H+ in a pH-dependent reaction. Two possible explanations of the “bicarbonate effect” are presented.  相似文献   

8.
pICln has been proposed to be the swelling-activated anion channel responsible for ICl, swell, or a channel regulator. We tested the anion channel hypothesis by reconstituting recombinant pICln into artificial and biological membranes. Single channels were observed when pICln was reconstituted into planar lipid bilayers. In the presence of symmetrical 300 mM KCl, the channels had a high open probability and a slope conductance of 48 pS, and were outwardly rectifying. Reduction of trans KCl to 50 mM shifted the reversal potential by −31.2 ± 0.06 mV, demonstrating that the channel is at least seven times more selective for cations than for anions. Consistent with this finding, channel conductance was unaffected by substitution of Cl with glutamate, but was undetectable when K+ was replaced by N-methyl-d-glucamine. Reconstitution of pICln into liposomes increased 86Rb+ uptake by three- to fourfold, but had no effect on 36Cl uptake. Phosphorylation of pICln with casein kinase II or mutation of G54, G56, and G58 to alanine decreased channel open probability and 86Rb+ uptake. When added to the external medium bathing Sf9 cells, pICln inserted into the plasma membrane and increased cell cation permeability. Taken together, these observations demonstrate that channel activity is due to pICln and not minor contaminant proteins. However, these findings do not support the hypothesis that pICln is the anion-selective ICl, swell channel. The observed cation channel activity may reflect an as yet to be defined physiological function of pICln, or may be a consequence of in vitro reconstitution of purified, recombinant protein.  相似文献   

9.
Here, we review the current knowledge about the energetics of arginine insertion into the bilayer hydrocarbon core, and we discuss discrepancies between experimental and computational studies of the insertion process. While simulations suggest that it should be very costly to place arginine into the hydrocarbon core, experiments show that arginine is found there. Both types of studies suggest that arginine insertion into the bilayer involves substantial bilayer deformation, with multiple hydrogen bonds between the arginine guanidinium group and lipid polar groups. It is possible that the discrepancies concerning the insertion cost of arginine arise because simulations overestimate the cost associated with bilayer deformation and underestimate the ability of the bilayer to adapt to charged and polar groups. This is an active area of research, and there is no doubt that a consensus view of arginine in membranes will soon emerge.  相似文献   

10.
Ceramide channels formed in the outer membrane of mitochondria have been proposed to be the pathways by which proapoptotic proteins are released from mitochondria during the early stages of apoptosis. We report that sphingosine also forms channels in membranes, but these differ greatly from the large oligomeric barrel-stave channels formed by ceramide. Sphingosine channels have short open lifetimes and have diameters less than 2 nm, whereas ceramide channels have long open lifetimes, enlarge in size reaching diameters in excess of 10 nm. Unlike ceramide, sphingosine forms channels in erythrocyte plasma membranes that vary in size with concentration, but with a maximum possible channel diameter of 2 nm. In isolated mitochondria, a large proportion of the added sphingosine was rapidly metabolized to ceramide in the absence of externally added fatty acids or fatty-acyl-CoAs. The ceramide synthase inhibitor, fumonisin B1 failed to prevent sphingosine metabolism to ceramide and actually increased it. However, partial inhibition of conversion to ceramide was achieved in the presence of ceramidase inhibitors, indicating that reverse ceramidase activity is at least partially responsible for sphingosine metabolism to ceramide. A small amount of cytochrome c release was detected. It correlated with the level of ceramide converted from sphingosine. Thus, sphingosine channels, unlike ceramide channels, are not large enough to allow the passage of proapoptotic proteins from the intermembrane space of mitochondria to the cytoplasm.  相似文献   

11.
12.
Whether class-A G-protein coupled receptors (GPCRs) exist and work as monomers or dimers has drawn extensive attention. A class-A GPCR dopamine D2 receptor (D2R) is involved in many physiological and pathological processes and diseases, indicating its critical role in proper functioning of neuronal circuits. In particular, D2R homodimers might play key roles in schizophrenia development and amphetamine-induced psychosis. Here, using single-molecule imaging, we directly tracked single D2R molecules in the plasma membrane at a physiological temperature of 37?°C, and unequivocally determined that D2R forms transient dimers with a lifetime of 68?ms in its resting state. Agonist addition prolonged the dimer lifetime by a factor of ~1.5, suggesting the possibility that transient dimers might be involved in signaling.  相似文献   

13.
Pores formed by the polyene antibiotic nystatin were studied in solvent-free lipid membranes. The membranes were formed by the tip-dip technique using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with different mol fractions (0–50%) of cholesterol or ergosterol. The effects of the mol fraction of sterol and of temperature variation (15–35°C) on the activity of the pores, their unitary conductances, lifetimes and time average conductances were studied. The results were used to analyze the behavior of nystatin channels along the phase diagrams previously reported for these lipid mixtures and to propose that membrane structure is the determinant factor for the known ergosterol/cholesterol selectivity.  相似文献   

14.
The Protein Journal - An interplay between monomeric and dimeric forms of human epidermal growth factor (EGF) affecting its interaction with EGF receptor (EGFR) is poorly understood. While EGF...  相似文献   

15.
16.
The effect of macromolecular crowding on the binding of ligands to a receptor near membranes is studied using Brownian dynamics simulations. The receptor is modeled as a reactive patch on a hard surface and the ligands and crowding agents are modeled as spheres that interact via a steep repulsive interaction potential. When a ligand collides with the patch, it reacts with probability prxn. The association rate constant (k) can be decomposed into contributions from diffusion-limited (kD) and reaction-limited (kR) rates, i.e., 1/k = 1/kD + 1/kR. The simulations show that kD is a nonmonotonic function of the volume fraction of crowding agents for receptors of small sizes. kR is always an increasing function of the volume fraction of crowding agents, and the association rate constant k determined from both contributions has a qualitatively different dependence on the macromolecular crowding for high and low values of the reaction probability prxn. The simulation results are used to predict the velocity of the membrane protrusion driven by actin filament elongation. Based on the simple model where the protrusive force on the membrane is generated by the intercalation of actin monomers between the membrane and actin filament ends, we predict that crowding increases the local concentration of actin monomers near the filament ends and hence accelerates the membrane protrusion.  相似文献   

17.
The outer limiting membranes of developmental reticulate forms of the meningopneumonitis organism were purified by a combination of differential centrifugation, trypsin digestion, and sodium dodecyl sulfate treatment, and their physical and chemical properties were compared with those of outer envelopes of mature dense forms of this organism. Reticulate bodies were easily disrupted by short periods of sonic treatment and were lysed by trysin digestion, in contrast to the dense bodies which were resistant to these treatments. In electron micrographs, reticulate body membranes were seen as very thin, flattened structures, whereas dense-body envelopes showed folding rigid membranes. The results of chemical fractionation of (32)P-labeled purified preparations indicated that reticulate body membranes have smaller amounts of phospholipid, and are more dense than cell walls of the mature forms. The analysis of amino acid composition of reticulate body cell membranes showed that they do not contain cystine or methionine, both of which were found in cell walls of dense bodies. These results clearly show that there are significant differences in the chemical and physical properties of the outer envelopes of the developmental and mature forms of this organism.  相似文献   

18.
细胞膜质微区(microdomain)是细胞膜上特殊的结构域,在细胞信号转导和物质运输过程中起着非常重要的作用.绝大多数膜质微区来源于全细胞膜,即包括质膜和细胞器膜.最新研究表明细胞器膜如高尔基体膜也有膜质微区,因此分离了猪心肌浆网膜的膜质微区.首先获得了没有质膜污染的猪心肌浆网,用去污剂TritonX-100处理该肌浆网,获得了去污剂不溶的质膜微区(SR-DRM),该微区富集胆固醇和鞘磷脂.质膜微区的标记脂和蛋白质:神经节苷脂GM1和Caveolin-3也在该区富集.同时还研究了心肌浆网Ca2 -ATPase(SERCA2a)的分布,结果表明,相当数量的SERCA2a分布在膜质微区,并且有正常的生理功能.上述研究结果表明,在心肌浆网膜上有膜质微区的存在,进一步证明膜质微区不仅存在于细胞质膜,也普遍存在于细胞器膜.  相似文献   

19.

Background

Allergen-mediated cross-linking of IgE antibodies bound to the FcεRI receptors on the mast cell surface is the key feature of the type I allergy. If an allergen is a homodimer, its allergenicity is enhanced because it would only need one type of antibody, instead of two, for cross-linking.

Methodology/Principal Findings

An analysis of 55 crystal structures of allergens showed that 80% of them exist in symmetric dimers or oligomers in crystals. The majority are transient dimers that are formed at high protein concentrations that are reached in cells by colocalization. Native mass spectrometric analysis showed that native allergens do indeed form transient dimers in solution, while hypoallergenic variants of them exist almost solely in the monomeric form. We created a monomeric Bos d 5 allergen and show that it has a reduced capability to induce histamine release.

Conclusions/Significance

The results suggest that dimerization would be a very common and essential feature for allergens. Thus, the preparation of purely monomeric variants of allergens could open up novel possibilities for specific immunotherapy.  相似文献   

20.
P2X receptors are commonly known as plasma membrane cation channels involved in a wide variety of cell functions. The properties of these channels have been extensively studied on the plasma membrane. However, studies in amoeba suggest that P2X receptors are also present intracellularly and involved in vesicle fusion with the plasma membrane. Recently, it was shown that in addition to plasma membrane expression, mammalian P2X4 was also localized intracellularly in lysosomes. However, it was not clear whether the lysosomal P2X4 receptors function as channels and how they are activated and regulated. In this paper, we show that both P2X4 and its natural ligand, ATP, are enriched in lysosomes of COS1 and HEK293 cells. By directly recording membrane currents from enlarged lysosomal vacuoles, we demonstrated that lysosomal P2X4 formed channels activated by ATP from the luminal side in a pH-dependent manner. While the acidic pH at the luminal side inhibited P2X4 activity, increasing the luminal pH in the presence of ATP caused P2X4 activation. We further showed that, as for the plasma membrane P2X4, the lysosomal P2X4 was potentiated by ivermectin but insensitive to suramin and PPADS, and it permeated the large cation N-methyl-d-glucamine upon activation. Our data suggest that P2X4 forms functional ATP-activated cation channels on lysosomal membranes regulated by luminal pH. Together with the reported fusion effect of intracellular P2X in lower organisms, we speculate that the lysosome-localized P2X4 may play specific roles in membrane trafficking of acidic organelles in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号