首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CXCR4 is a chemokine receptor which has been shown to be exploited by various tumors for increased survival, invasion, and homing to target organs. We developed a one step radiosynthesis for labeling the CXCR4-specific antagonist AMD3100 with Cu-64 to produce 64Cu-AMD3100 with a specific activity of 11.28 Ci/μmol (417 GBq/μmol) at the end of radiosynthesis. Incorporation of Cu(II) ion into AMD3100 did not change its ability to inhibit cellular migration in response to the (only) CXCR4 ligand, SDF-1/CXCL12. 64Cu-AMD3100 binding affinity to CXCR4 was found to be 62.7 μM. Biodistribution of 64Cu-AMD3100 showed accumulation in CXCR4-expressing organs and tissues, a renal clearance pathway, and an anomalous specific accumulation in the liver. We conclude that 64Cu-AMD3100 exhibits promise as a potential PET imaging agent for visualization of CXCR4-positive tumors and metastases and might be used to guide and monitor anti-CXCR4 tumor therapy.  相似文献   

2.
The majority of breast cancer cases ultimately become unresponsive to endocrine therapies, and this progression of breast cancer from hormone-responsive to hormone-independent represents an area in need of further research. Additionally, hormone-independent carcinomas are characterized as being more aggressive and metastatic, key features of more advanced disease. Having previously shown the ability of the stromal-cell derived factor-1 (SDF-1)–CXCR4 signaling axis to promote primary tumorigenesis and hormone independence by overexpressing CXCR4 in MCF-7 cells, in this study we further examined the role of SDF-1/CXCR4 in the endogenously CXCR4-positive, estrogen receptor α (ER-α)-positive breast carcinoma cell line, MDA–MB-361. In addition to regulating estrogen-induced and hormone-independent tumor growth, CXCR4 signaling stimulated the epithelial-to-mesenchymal transition, evidenced by decreased CDH1 expression following SDF-1 treatment. Furthermore, inhibition of CXCR4 with the small molecule inhibitor AMD3100 induced CDH1 gene expression and inhibited CDH2 gene expression in MDA–MB-361 cells. Further, exogenous SDF-1 treatment induced ER-α-phosphorylation in both MDA–MB-361 and MCF-7–CXCR4 cells, demonstrating ligand-independent activation of ER-α through CXCR4 crosstalk. qPCR microRNA array analyses of the MDA–MB-361 and MCF-7–CXCR4 cell lines revealed changes in microRNA expression profiles induced by SDF-1, consistent with a more advanced disease phenotype and further supporting our hypothesis that the SDF-1/CXCR4 signaling axis drives ER-α-positive breast cancer cells to a hormone independent and more aggressive phenotype. In this first demonstration of SDF-1–CXCR4-induced microRNAs in breast cancer, we suggest that this signaling axis may promote tumorigenesis via microRNA regulation. These findings represent future potential therapeutic targets for the treatment of hormone-independent and endocrine-resistant breast cancer.  相似文献   

3.
CXCR4, the receptor for stromal-derived factor-1, is reportedly involved in breast carcinogenesis. However, the mechanisms through which CXCR4 contributes to breast cancer cell growth and metastases are poorly understood. In this study, we examined the putative in vitro and in vivo anti-cancer effects of the specific CXCR4 inhibitor AMD3465. Here, we report that AMD3465 triggers a reduction in breast cancer cell invasiveness in vitro, and promotes marked changes in oncogenic signaling proteins including a reduction in STAT3, JAK2, AKT, and CXCR4 phosphorylation and the reduced expression of GSK3 and cMYC. Using three breast cancer cell lines as murine syngeneic immunocompetent breast cancer models, we found that AMD3465 inhibited breast tumor formation and reduced tumor cell metastases to the lung and liver. Furthermore, treatment with AMD3465 significantly reduced the infiltration of myeloid CD11b positive cells at the aforementioned metastatic sites as well as the spleen implying this agent could regulate the formation of the tumor microenvironment and conceivably the premetastatic niche. In conclusion, our studies suggest that AMD3465 inhibits breast cancer growth and metastases by acting on tumor cells as well as immune cells that constitute the tumor microenvironment. This process appears to be regulated, at least in part, through the modulation of oncogenic signaling that includes the STAT3 pathway. Thus, CXCR4 could be a novel target for breast cancer therapy.  相似文献   

4.
Squamous cell carcinoma of the cervix, highly prevalent in the developing world, is often metastatic and treatment resistant with no standard treatment protocol. Our laboratory pioneered the patient-derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). Unlike subcutaneous transplant patient-derived xenograft (PDX) models, PDOX models metastasize. Most importantly, the metastasis pattern correlates to the patient. In the present report, we describe the development of a PDOX model of HER-2-positive cervical cancer. Metastasis after SOI in nude mice included peritoneal dissemination, liver metastasis, lung metastasis as well as lymph node metastasis reflecting the metastatic pattern in the donor patient. Metastasis was detected in 4 of 6 nude mice with primary tumors. Primary tumors and metastases in the nude mice had histological structures similar to the original tumor and were stained by an anti-HER-2 antibody in the same pattern as the patient’s cancer. The metastatic pattern, histology and HER-2 tumor expression of the patient were thus preserved in the PDOX model. In contrast, subcutaneous transplantation of the patient’s cervical tumors resulted in primary growth but not metastasis.  相似文献   

5.
Chemokine receptor CXCR4 was involved in the progression of breast cancer to a metastatic phenotype, leading to the major cause of death in patients. A more in-depth understanding of signaling mechanism underlying CXCR4 is critical to develop effective therapies toward metastasis. Recently, the role of antimicrobial peptide LL-37 in contributing to the metastasis of breast cancer cells was observed. Clinical analysis of data herein demonstrated for the first time that overexpression of LL-37 and CXCR4 co-existed in human primary breast tumors with lymph node metastases. Further study disclosed that forced expression of CXCR4 led to the enhancement of pro-migratory signaling and migration rate induced by LL-37 in breast cancer cells. Moreover, LL-37 affected tumor microenvironment including induction of migration of mesenchymal stem cells and CXCR4-dependent capillary-like tubule formation. Functional analysis showed that LL-37 induced the internalization of CXCR4 through approaching Glu268, the residue of CXCR4, independent of the binding pocket (Asp171, Asp262, and Glu288) for CXCR4 inhibitor AMD3100, signifying that LL-37 is a distinct agonist of CXCR4. These results suggest the reciprocal roles of LL-37 and CXCR4 in promoting breast cancer cell migration and provide new insight into the design of CXCR4 inhibitor for intervention of metastatic breast cancer.  相似文献   

6.
Compelling evidence has emerged in recent years indicating that stromal cells play a critical role in disease progression. CXCR4 is a G-protein-coupled receptor with a major role in lymphocyte homing. Its ligand, CXCL12, is a highly efficient chemotactic factor for T cells, monocytes, pre-B cells, dendritic cells and myeloid bone marrow-derived cells (BMDCs). In addition, the CXCR4-CXCL12 axis plays a central role in tumor growth and metastasis. To evaluate the effect of genetic CXCR4 reduction on metastasis development, murine melanoma B16 cells were injected into the tail vein of C57BL/6 CXCR4(+/+) and CXCR4(+/-) mice in the presence of the CXCR4 inhibitor, Plerixafor (previously named AMD3100). Although lung metastases developed in wild-type CXCR4(+/+) and heterozygote CXCR4(+/-) mice, nodules were significantly smaller in the latter. CXCR4 pharmacological inhibition by Plerixafor further reduced lung metastases in CXCR4(+/-) mice, preserving the pulmonary architecture (4.18?±?1.38?mm(2) vs. 1.11?±?0.60?mm(2), p?=?0.038). A reduction in LY6G-positive myeloid/granulocytic cells and in p38 MAPK activation was detected in lungs from CXCR4(+/-) mice compared to CXCR4(+/+) mice [LY6G-positive myeloid CXCR4(+/-) vs. CXCR4(+/+) (p?=?0.0004); CXCR4(+/+) vs. CXCR4(+/+) Plerixafor-treated (p?=?0.0031)] suggesting that CXCR4 reduction on myeloid-derived cells reduced their recruitment to the lung, consequently impairing lung metastases. Our findings argue in favor of a specific role of CXCR4 expressed in stromal cells that condition the pro-tumor microenvironment. In this scenario, CXCR4 antagonists will target neoplastic cells as well as the pro-tumor stromal microenvironment.  相似文献   

7.
We have previously shown that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of lymph node metastasis, but not in that of distant metastasis, in oral squamous cell carcinoma (SCC). In this study, we investigated the role of the autocrine SDF-1/CXCR4 system, with a focus on distant metastasis in oral SCC cells. The immunohistochemical staining of SDF-1 and CXCR4 using primary oral SCCs and metastatic lymph nodes showed a significantly higher number of SDF-1-positive cases among the metastatic lymph nodes than among the primary oral SCCs, which was associated with a poor survival rate among those of the former group. The forced expression of SDF-1 in B88 cells, which exhibit functional CXCR4 and lymph node metastatic potential (i.e., the autocrine SDF-1/CXCR4 system), conferred enhanced cell motility and anchorage-independent growth potential onto the cells. Orthotopic inoculation of the transfectant into nude mice was associated with an increase in the number of metastatic lymph nodes and more aggressive metastatic foci in the lymph nodes. Furthermore, the SDF-1 transfectant (i.e., the autocrine SDF-1/CXCR4 system) exhibited dramatic metastasis to the lung after i.v. inoculation, whereas the mock transfectant (i.e., the paracrine SDF-1/CXCR4 system) did not. Under the present conditions, AMD3100, a CXCR4 antagonist, significantly inhibited the lung metastasis of the SDF-1 transfectant, ameliorated body weight loss, and improved the survival rate of tumor-bearing nude mice. These results suggested that, in cases of oral SCC, the paracrine SDF-1/CXCR4 system potentiates lymph node metastasis, but distant metastasis might require the autocrine SDF-1/CXCR4 system.  相似文献   

8.
The Glu-Leu-Arg(+) (ELR(+)) CXC chemokines are potent promoters of angiogenesis and have been demonstrated to induce a significant portion of nonsmall cell lung cancer-derived angiogenic activity and support tumorigenesis. ELR(+) CXC chemokines share a common chemokine receptor, CXCR2. We hypothesized that CXCR2 mediates the proangiogenic effects of ELR(+) CXC chemokines during tumorigenesis. To test this postulate, we used syngeneic murine Lewis lung cancer (LLC; 3LL, H-2(b)) heterotopic and orthotopic tumor model systems in C57BL/6 mice replete (CXCR2(+/+)) and deficient in CXCR2 (CXCR2(-/-)). We first demonstrated a correlation of the expression of endogenous ELR(+) CXC chemokines with tumor growth and metastatic potential of LLC tumors. Next, we found that LLC primary tumors were significantly reduced in growth in CXCR2(-/-) mice. Moreover, we found a marked reduction in the spontaneous metastases of heterotopic tumors to the lungs of CXCR2(-/-) mice. Morphometric analysis of the primary tumors in CXCR2(-/-) mice demonstrated increased necrosis and reduced vascular density. These findings were further confirmed in CXCR2(+/+) mice using specific neutralizing Abs to CXCR2. The results of these studies support the notion that CXCR2 mediates the angiogenic activity of ELR(+) CXC chemokines in a preclinical model of lung cancer.  相似文献   

9.
CXCR4 is a G protein-coupled receptor (GPCR) that has multiple critical functions in normal and pathologic physiology that include regulation of the metastatic behavior of mammary carcinoma, and utilization as a coreceptor for infection by T-tropic strains of human immunodeficiency virus-1. Molecular dynamic simulations of the rhodopsin-based homology model of CXCR4 were performed in a solvated lipid bilayer to reproduce the microenvironment of this integral membrane protein. The amino acids in CXCR4 necessary for interaction with an inverse agonist, T140, and a weak partial agonist, AMD3100, identified by alanine scanning mutants, were spatially consistent when computationally docked. Whereas T140 binds residues in extracellular domains and regions of the hydrophobic core proximal to the cell surface, amino acids in the central hydrophobic core are critical to binding of AMD3100. The physical localization of T140 binding to CXCR4 by biochemical analyses corroborated the molecular and computational approaches. The structural basis for the interaction of T140 and AMD3100 with CXCR4 confirms that the mechanisms used by these agents are different. This complementary utilization of molecular, physical, and computation analysis provides a powerful approach to elucidate GPCR conformation.  相似文献   

10.
Ovarian cancer (OC) is a lethal gynecologic tumor, which brings its mortality to the head. CXCL12 and its receptor chemokine receptor 4 ( CXCR4) have been found to be highly expressed in OC and contribute to the disease progression by affecting tumor cell proliferation and invasion. Here, in this study, we aim to explore whether the blockade of CXCL12–CXCR4 axis with AMD3100 (a selective CXCR4 antagonist) has effects on the progression of OC. On the basis of the gene expression omnibus database of OC gene expression chips, the OC differentially expressed genes were screened by microarray analysis. OC (nonmetastatic and metastatic) and normal ovarian tissues were collected to determine the expressions of CXCL12 and CXCR4. A series of AMD3100, shRNA against CXCR4, and pCNS-CXCR4 were introduced to treat CAOV3 cells with the highest CXCR4 was assessed. Cell viability, apoptosis, migration, and invasion were all evaluated. The microarray analysis screened out the differential expression of CXCL12–CXCR4 in OC. CXCL12 and CXCR4 expressions were increased in OC tissues, particularly in the metastatic OC tissues. Downregulation of CXCR4 by AMD3100 or shRNA was observed to have a critical role in inhibiting cell proliferation, migration, and invasion of the CAOV3 OC cell line while promoting cell apoptosis. Overexpressed CXCR4 brought significantly promoting effects on the proliferation and invasiveness of OC cells. These results reinforce that the blockade of CXCL12–CXCR4 axis with AMD3100 inhibits the growth of OC cells. The antitumor role of the inhibition of CXCL12–CXCR4 axis offers a preclinical validation of CXCL12–CXCR4 axis as a therapeutic target in OC.  相似文献   

11.
Stromal-derived factor-1 (SDF-1) is a unique ligand of the CXC chemokine receptor 4 (CXCR4), which is critically involved in the metastasis of breast cancer. High levels of SDF-1 in the common destination organs of metastasis, such as the lymph nodes, lungs, liver, and bones, attract CXCR4-positive tumor cells. The interaction between SDF-1 and CXCR4 leads to the activation of specific signaling pathways, allowing for homing and metastatic progression. However, regulation of CXCR4 expression at the metastatic organ site is not well-documented. We detected the expression of CXCR4 and hypoxia inducible factor (HIF)-1alpha in breast tumor tissues by immunohistochemical staining and analyzed SDF-1 in primary tumors and lymph nodes using real-time RT-PCR. Compared to the corresponding metastasized tumors in the lymph nodes, primary invasive carcinomas showed more intense staining for CXCR4, particularly on the cellular membrane. Both primary tumors and lymph node metastases exhibited higher levels of CXCR4 expression compared to non-neoplastic breast tissues. Therefore, we hypothesized that the tumor environment in the lymph nodes may cause the reduction of CXCR4 levels in the metastatic tumor cells because of: (1) high SDF-1 levels and (2) lower levels of HIF-1alpha. Our in vitro data demonstrated that high levels of SDF-1 can induce the internalization and degradation of CXCR4 through the lysosome pathway. In addition, lower levels of HIF-1alpha in the lymph node metastases, probably induced by the less hypoxic environment, further lowered CXCR4 levels. These results indicate that ligand-dependent degradation and lower HIF-1alpha levels may be potential causes of lowered levels of CXCR4 in the lymph nodes compared to the primary tumors. Our study suggests that CXCR4 levels in tumor cells are regulated by its microenvironment. These findings may enhance our ability to understand the biological behavior of breast cancers.  相似文献   

12.
Targeting the interaction between G-Protein Coupled Receptor, CXCR4, and its natural ligand CXCL12 is a leading strategy to mitigate cancer metastasis and reduce inflammation. Several pyridine-based compounds modeled after known small molecule CXCR4 antagonists, AMD3100 and WZ811, were synthesized. Nine hit compounds were identified. These compounds showed lower binding concentrations than AMD3100 (1000 nM) and six of the nine compounds had an effective concentration (EC) less than or equal to WZ811 (10 nM). Two of the hit compounds (2g and 2w) inhibited invasion of metastatic cells at a higher rate than AMD3100 (62%). Compounds 2g and 2w also inhibit inflammation in the same range as WZ811 in the paw edema test at 40% reduction in inflammation. These preliminary results are the promising foundation of a new class of pyridine-based CXCR4 antagonists.  相似文献   

13.
Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4   总被引:35,自引:0,他引:35  
This study was undertaken to demonstrate the unique specificity of the chemokine receptor CXCR4 antagonist AMD3100. Calcium flux assays with selected chemokine/cell combinations, affording distinct chemokine receptor specificities, revealed no interaction of AMD3100 with any of the chemokine receptors CXCR1 through CXCR3, or CCR1 through CCR9. In contrast, AMD3100 potently inhibited CXCR4-mediated calcium signaling and chemotaxis in a concentration-dependent manner in different cell types. Also, AMD3100 inhibited stromal cell-derived factor (SDF)-1-induced endocytosis of CXCR4, but did not affect phorbol ester-induced receptor internalization. Importantly, AMD3100 by itself was unable to elicit intracellular calcium fluxes, to induce chemotaxis, or to trigger CXCR4 internalization, indicating that the compound does not act as a CXCR4 agonist. Specific small-molecule CXCR4 antagonists such as AMD3100 may play an important role in the treatment of human immunodeficiency virus infections and many other pathological processes that are dependent on SDF-1/CXCR4 interactions (e.g. rheumatoid arthritis, atherosclerosis, asthma and breast cancer metastasis).  相似文献   

14.
Chemokine CXCL12 and receptor CXCR4 have emerged as promising therapeutic targets for ovarian cancer, a disease that continues to have a dismal prognosis. CXCL12-CXCR4 signaling drives proliferation, survival, and invasion of ovarian cancer cells, leading to tumor growth and metastasis. Pleiotropic effects of CXCR4 in multiple key steps in ovarian cancer suggest that blocking this pathway will improve outcomes for patients with this disease. To quantify CXCL12-CXCR4 signaling in cell-based assays and living mouse models of ovarian cancer, we developed a click beetle red luciferase complementation reporter that detects activation of CXCR4 based on recruitment of the cytosolic adapter protein β-arrestin 2. Both in two-dimensional and three-dimensional cell cultures, we established that bioluminescence from this reporter measures CXCL12-dependent activation of CXCR4 and inhibition of this pathway with AMD3100, a clinically-approved small molecule that blocks CXCL12-CXCR4 binding. We used this imaging system to quantify CXCL12-CXCR4 signaling in a mouse model of metastatic ovarian cancer and showed that treatment with AMD3100 interrupted this pathway in vivo. Combination therapy with AMD3100 and cisplatin significantly decreased tumor burden in mice, although differences in overall survival were not significantly greater than treatment with either agent as monotherapy. These studies establish a molecular imaging reporter system for analyzing CXCL12-CXCR4 signaling in ovarian cancer, which can be used to investigate biology and therapeutic targeting of this pathway in cell-based assays and living mice.  相似文献   

15.
Zerhouni B  Nelson JA  Saha K 《Journal of virology》2004,78(22):12288-12296
We recently isolated from an infant an X4-syncytium-inducing (SI) human immunodeficiency virus type 1 (HIV-1) variant (92US143-T8) that was able to infect CD8+ lymphocytes independently of CD4. Although it was CD4 independent, the 92US143-T8 isolate also maintained the ability to infect CD4+ cells. In the present study, we investigated the role of CXCR4 in the infection of CD4+ and CD8+ cells by this primary isolate. The expression of CXCR4 was down modulated in CD8+ lymphocytes after infection with the 93US143-T8 isolate. Infection of CD8+ lymphocytes by the 93US143-T8 isolate was prevented by treatment with AMD3100, a specific antagonist for CXCR4, indicating CXCR4-dependent infection. Interestingly, AMD3100 treatment had no inhibitory role in the infection of purified CD4+ lymphocytes by the same isolate. Furthermore, AMD3100 treatment failed to prevent infection of known CD4+ CXCR4+ T-cell lines (MT-2 and CEM) by the 93US143-T8 isolate. In fact, virus replication in the CD4+ cells was often enhanced in the presence of AMD3100. Viruses produced from the infected CD4+ cells in the presence of AMD3100 maintained an unchanged envelope genotype and an SI phenotype. For the first time, these results provide evidence of CXCR4-dependent infection of CD8+ lymphocytes by a primary HIV-1 isolate. This study also shows a different mode of infection for the CD4+ and CD8+ lymphocytes by the same HIV-1 variant. Finally, our findings suggest that a more careful evaluation is necessary before the random use of AMD3100 as a new entry inhibitor in patients harboring SI HIV-1 strains.  相似文献   

16.
We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.  相似文献   

17.
The bicyclam AMD3100 is a potent and selective inhibitor of the replication of human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2). It was recently demonstrated that the compound inhibited HIV entry through CXCR4 but not through CCR5. Selectivity of AMD3100 for CXCR4 was further indicated by its lack of effect on HIV-1 and HIV-2 infection mediated by the CCR5, CCR3, Bonzo, BOB, and US28, coreceptors. AMD3100 completely blocked HIV-1 infection mediated by a mutant CXCR4 bearing a deletion of most of the amino-terminal extracellular domain. In contrast, relative resistance to AMD3100 was conferred by different single amino acid substitutions in the second extracellular loop (ECL2) or in the adjacent membrane-spanning domain, TM4. Only substitutions of a neutral residue for aspartic acid and of a nonaromatic residue for phenylalanine (Phe) were associated with drug resistance. This suggests a direct interaction of AMD3100 with these amino acids rather than indirect effects of their mutation on the CXCR4 structure. The interaction of aspartic acids of ECL2 and TM4 with AMD3100 is consistent with the positive charge of bicyclams, which might block HIV-1 entry by preventing electrostatic interactions between CXCR4 and the HIV-1 envelope protein gp120. Other features of AMD3100 must account for its high antiviral activity, in particular the presence of an aromatic linker between the cyclam units. This aromatic group might engage in hydrophobic interactions with the Phe-X-Phe motifs of ECL2 or TM4. These results confirm the importance of ECL2 for the HIV coreceptor activity of CXCR4.  相似文献   

18.
CXCR4 is a G protein-coupled receptor for stromal-derived factor 1 (SDF-1) that plays a critical role in leukocyte trafficking, metastasis of mammary carcinoma, and human immunodeficiency virus type-1 infection. To elucidate the mechanism for CXCR4 activation, a constitutively active mutant (CAM) was derived by coupling the receptor to the pheromone response pathway in yeast. Conversion of Asn-119 to Ser or Ala, but not Asp or Lys, conferred autonomous CXCR4 signaling in yeast and mammalian cells. SDF-1 induced signaling in variants with substitution of Asn-119 to Ser, Ala, or Asp, but not Lys. These variants had similar cell surface expression and binding affinity for SDF-1. CXCR4-CAMs were constitutively phosphorylated and present in cytosolic inclusions. Analysis of antagonists revealed that exposure to AMD3100 or ALX40-4C induced G protein activation by CXCR4 wild type, which was greater in the CAM, whereas T140 decreased autonomous signaling. The affinity of AMD3100 and ALX40-4C binding to CAMs was less than to wild type, providing evidence of a conformational shift. These results illustrate the importance of transmembrane helix 3 in CXCR4 signaling. Insight into the mechanism for CXCR4 antagonists will allow for the development of a new generation of agents that lack partial agonist activity that may induce toxicities, as observed for AMD3100.  相似文献   

19.
Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44(+)/CD133(+) prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy.  相似文献   

20.
Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have been found to be tightly correlated with the progression of prostate cancer (PC). In this study, we investigated the effects of an SDF-1α/CXCR4 inhibitor, AMD3100, on cell progression and metastasis potential of human PC cells. Human PC cell lines (LNCaP, PC3, and DU145) were cultured to detect SDF-1α/CXCR4, which showed higher SDF-1α and CXCR4 expression than the normal human prostate epithelial cell line, RWPE-1. AMD3100 was confirmed to be an inhibitor of SDF-1α, and to detect the effect of SDF-1α/CXCR4 inhibition on PC, PC cells were treated with AMD3100 or/and CXCR4 siRNA. The results suggested that inhibition of the SDF-1α/CXCR4 pathway could promote the E-cadherin level but inhibit the levels of invasion and migration of vimentin, N-cadherin and α5β1 integrin. Finally, tumor formation in nude mice was conducted, and the cell experiment results were verfied. These data show that AMD3100 suppresses epithelial–mesenchymal transition and migration of PC cells by inhibiting the SDF-1α/CXCR4 signaling pathway, which provides a clinical target in the treatment of PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号