首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyadenylation of mRNA has been shown to target the RNA molecule for rapid exonucleolytic degradation in bacteria. To elucidate the molecular mechanism governing this effect, we determined whether the Escherichia coli exoribonuclease polynucleotide phosphorylase (PNPase) preferably degrades polyadenylated RNA. When separately incubated with each molecule, isolated PNPase degraded polyadenylated and non-polyadenylated RNAs at similar rates. However, when the two molecules were mixed together, the polyadenylated RNA was degraded, whereas the non-polyadenylated RNA was stabilized. The same phenomenon was observed with polyuridinylated RNA. The poly(A) tail has to be located at the 3' end of the RNA, as the addition of several other nucleotides at the 3' end prevented competition for polyadenylated RNA. In RNA-binding experiments, E. coli PNPase bound to poly(A) and poly(U) sequences with much higher affinity than to poly(C) and poly(G). This high binding affinity defines poly(A) and poly(U) RNAs as preferential substrates for this enzyme. The high affinity of PNPase for polyadenylated RNA molecules may be part of the molecular mechanism by which polyadenylated RNA is preferentially degraded in bacterial cells.  相似文献   

2.
PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (DeltaKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the DeltaKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-DeltaKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Deltapnp mutation at 18 degrees C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.  相似文献   

3.
Polynucleotide phosphorylase (PNPase), an enzyme conserved in bacteria and eukaryotic organelles, processively catalyzes the phosphorolysis of RNA, releasing nucleotide diphosphates, and the reverse polymerization reaction. In Escherichia coli, both reactions are implicated in RNA decay, as addition of either poly(A) or heteropolymeric tails targets RNA to degradation. PNPase may also be associated with the RNA degradosome, a heteromultimeric protein machine that can degrade highly structured RNA. Here, we report that ATP binds to PNPase and allosterically inhibits both its phosphorolytic and polymerization activities. Our data suggest that PNPase-dependent RNA tailing and degradation occur mainly at low ATP concentrations, whereas other enzymes may play a more significant role at high energy charge. These findings connect RNA turnover with the energy charge of the cell and highlight unforeseen metabolic roles of PNPase.  相似文献   

4.
PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (ΔKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the ΔKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-ΔKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Δpnp mutation at 18 °C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.  相似文献   

5.
We have examined the ability of wild-type polynucleotide phosphorylase (PNPase) from Streptomyces coelicolor and two mutant forms of the enzyme, N459D and C468A, to function in the polymerization of ADP and in the phosphorolysis of RNA substrates derived from the S. coelicolor rpsO-pnp operon. The wild-type enzyme was twice as active in polymerization as N459D and four times as active as C468A. The kcat/Km value for phosphorolysis of a structured RNA substrate by N459D was essentially the same as that observed for the wild-type enzyme, while C468A was 50% as active with this substrate. A mixture of all four common nucleoside diphosphates increased the kcat/Km for phosphorolysis of the structured substrate by the wild-type enzyme by a factor of 1.7 but did not affect phosphorolysis catalyzed by N459D or C468A. We conducted phosphorolysis of the structured substrate in the presence of nucleoside diphosphates and labeled the 3′ ends of the products of those reactions using [32P]pCp. Digestion of the end-labeled RNAs and display of the products on a sequencing gel revealed that wild-type S. coelicolor PNPase was able to synthesize RNA 3′ tails under phosphorolysis conditions while the N459D and C468A mutants could not. The wild-type enzyme did not add 3′ tails to a substrate that already possessed an unstructured 3′ tail. We propose a model in which the transient synthesis of 3′ tails facilitates the phosphorolysis of structured substrates by Streptomyces PNPase.  相似文献   

6.
7.
The transient existence of small RNAs free of binding to the RNA chaperone Hfq is part of the normal dynamic lifecycle of a sRNA. Small RNAs are extremely labile when not associated with Hfq, but the mechanism by which Hfq stabilizes sRNAs has been elusive. In this work we have found that polynucleotide phosphorylase (PNPase) is the major factor involved in the rapid degradation of small RNAs, especially those that are free of binding to Hfq. The levels of MicA, GlmY, RyhB, and SgrS RNAs are drastically increased upon PNPase inactivation in Hfq(-) cells. In the absence of Hfq, all sRNAs are slightly shorter than their full-length species as result of 3'-end trimming. We show that the turnover of Hfq-free small RNAs is growth-phase regulated, and that PNPase activity is particularly important in stationary phase. Indeed, PNPase makes a greater contribution than RNase E, which is commonly believed to be the main enzyme in the decay of small RNAs. Lack of poly(A) polymerase I (PAP I) is also found to affect the rapid degradation of Hfq-free small RNAs, although to a lesser extent. Our data also suggest that when the sRNA is not associated with Hfq, the degradation occurs mainly in a target-independent pathway in which RNase III has a reduced impact. This work demonstrated that small RNAs free of Hfq binding are preferably degraded by PNPase. Overall, our data highlight the impact of 3'-exonucleolytic RNA decay pathways and re-evaluates the degradation mechanisms of Hfq-free small RNAs.  相似文献   

8.
In this study, we use native polyacrylamide gel electrophoresis and one-dimensional NMR spectroscopy to analyze small RNA hairpins containing a UUCG tetraloop. The aggregation state of one RNA 16-mer (5'-CGGCUUCGGUCGACCA-3') in the presence of Mg(2+) was confirmed by laser light scattering. Although it is widely known in the RNA field that some RNAs tend to aggregate, especially when present at high concentrations, the sequence elements responsible for this effect are rarely identified. In this work, we show that Mg(2+)-induced aggregation of the 16-mer RNA hairpin is sensitive to the presence of the 3'-terminal base and a specific 2'-hydroxyl group. Our study highlights the fact that even small changes in a particular RNA sequence can increase its tendency to undergo Mg(2+)-dependent aggregation in an unpredictable manner. Our analysis also shows that native gel electrophoresis is a sensitive probe of RNA conformation with the capability to detect differences apparently caused by subtle base stacking effects at the ends of helices.  相似文献   

9.
Silverman SK  Cech TR 《Biochemistry》1999,38(43):14224-14237
The pathways by which large RNAs adopt tertiary structure are just beginning to be explored, and new methods that reveal RNA folding are highly desirable. Here we report an assay for RNA tertiary folding in which the fluorescence of a covalently incorporated chromophore is monitored. Folding of the 160-nucleotide Tetrahymena group I intron P4-P6 domain was used as a test system. Guided by the P4-P6 X-ray crystal structure, we chose a nucleotide (U107) for which derivatization at the 2'-position should not perturb the folded conformation. A 15-mer RNA oligonucleotide with a 2'-amino substitution at U107 was derivatized with a pyrene chromophore on a variable-length tether, and then ligated to the remainder of P4-P6, providing a site-specifically pyrene-labeled P4-P6 derivative. Upon titration of the pyrene-derivatized P4-P6 with Mg(2+), the equilibrium fluorescence intensity reversibly increased several-fold, as expected if the probe's chemical microenvironment changes as the RNA to which it is attached folds. The concentration and specificity of divalent ions required to induce the fluorescence change (Mg(2+) approximately Ca(2+) > Sr(2+)) correlated well with biochemical folding assays that involve nondenaturing gel electrophoresis. Furthermore, mutations in P4-P6 remote from the chromophore that shifted the Mg(2+) folding requirement on nondenaturing gels also affected in a predictable way the Mg(2+) requirement for the fluorescence increase. Initial stopped-flow studies with millisecond time resolution suggest that this fluorescence method will be useful for following the kinetics of P4-P6 tertiary folding. We conclude that a single site-specifically tethered chromophore can report the formation of global structure of a large RNA molecule, allowing one to monitor both the equilibrium progress and the real-time kinetics of RNA tertiary folding.  相似文献   

10.
Four RNA motifs are known that catalyse site-specific cleavage in the presence of Mg2+ ions, all discovered in natural RNAs. In a single in vitro selection experiment we have isolated representatives of five novel classes of Mg(2+)-dependent ribozymes. Small versions of three of these showed that a very simple internal loop type of secondary structure is responsible for the activity. One of these was synthesized in a bimolecular form, and compared directly with the hammerhead ribozyme; for the new ribozyme, the cleavage step of the reaction is much faster than the spontaneous rate of phosphodiester bond cleavage, yet substantially slower than that for the hammerhead. The results suggest that many more Mg(2+)-dependent self-cleaving RNA sequences can be found.  相似文献   

11.
12.
Mg(2+) -Responsive riboswitches represent a fascinating example of bifunctional RNAs that sense Mg(2+) ions with high selectivity and autonomously regulate the expression of Mg(2+) -transporter proteins. The mechanism of the mgtA riboswitch is scarcely understood, and a detailed structural analysis is called for to study how this RNA can selectively recognize Mg(2+) and respond by switching between two alternative stem loop structures. In this work, we investigated the structure and Mg(2+) -binding properties of the lower part of the antiterminator loop C from the mgtA riboswitch of Yersinia enterocolitica by solution NMR and report a discrete Mg(2+) -binding site embedded in the AU-rich sequence. At the position of Mg(2+) binding, the helical axis exhibits a distinct kink accompanied by a widening of the major groove, which accommodates the Mg(2+) -binding pocket. An unusually large overlap between two adenine residues on the opposite strands suggests that the bending may be sequence-induced by strong stacking interactions, enabling Mg(2+) to bind at this so-far not described metal-ion binding site.  相似文献   

13.
A second site specific endonuclease with a novel specificity has been isolated from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for activity. Tth111II cleaves phi X174RFDNA into 11 fragments. From the analysis of 5' terminal sequences of the phi X174RFDNA fragments produced by Tth111II action, it was concluded that Tth111II recognized the DNA sequence (See formula in text) and cleaved the sites as indicated by arrows.  相似文献   

14.
Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3' → 5' polarity in the presence of Mn(2+) and low inorganic phosphate (Pi) concentration, or to extend a 3'-OH end in the presence dNDP · Mn(2+). Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3'-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.  相似文献   

15.
The nucleocapsid (N) protein functions in hantavirus replication through its interactions with the viral genomic and antigenomic RNAs. To address the biological functions of the N protein, it was critical to first define this binding interaction. The dissociation constant, K(d), for the interaction of the Hantaan virus (HTNV) N protein and its genomic S segment (vRNA) was measured under several solution conditions. Overall, increasing the NaCl and Mg(2+) in these binding reactions had little impact on the K(d). However, the HTNV N protein showed an enhanced specificity for HTNV vRNA as compared with the S segment open reading frame RNA or a nonviral RNA with increasing ionic strength and the presence of Mg(2+). In contrast, the assembly of Sin Nombre virus N protein-HTNV vRNA complexes was inhibited by the presence of Mg(2+) or an increase in the ionic strength. The K(d) values for HTNV and Sin Nombre virus N proteins were nearly identical for the S segment open reading frame RNA, showing weak affinity over several binding reaction conditions. Our data suggest a model in which specific recognition of the HTNV vRNA by the HTNV N protein resides in the noncoding regions of the HTNV vRNA.  相似文献   

16.
In this report, we demonstrate that exonucleolytic turnover is much more important in the regulation of sRNA levels than was previously recognized. For the first time, PNPase is introduced as a major regulatory feature controlling the levels of the small noncoding RNAs MicA and RybB, which are required for the accurate expression of outer membrane proteins (OMPs). In the absence of PNPase, the pattern of OMPs is changed. In stationary phase, MicA RNA levels are increased in the PNPase mutant, leading to a decrease in the levels of its target ompA mRNA and the respective protein. This growth phase regulation represents a novel pathway of control. We have evaluated other ribonucleases in the control of MicA RNA, and we showed that degradation by PNPase surpasses the effect of endonucleolytic cleavages by RNase E. RybB was also destabilized by PNPase. This work highlights a new role for PNPase in the degradation of small noncoding RNAs and opens the way to evaluate striking similarities between bacteria and eukaryotes.  相似文献   

17.
1. Polynucleotide phosphorylase has been isolated and partially purified from crude preparations of guinea-pig liver nuclei. 2. The enzyme is particulate and associated with RNA and lipids characteristic of membranes. 3. It has phosphorolysis and exchange activities, but the latter may be due to a contaminating enzyme. 4. The phosphorolysis activity is dependent on bivalent cations, preferably Mg(2+), has a pH optimum between 8.6 and 9.2 and is inhibited by potassium chloride and sodium chloride. 5. The enzyme catalyses phosphorolysis of poly A, poly C, poly U, rRNA and tRNA. Poly G is only phosphorolysed to a very small extent and DNA is not a substrate. 6. The enzyme appears to lack nucleoside diphosphate polymerization activity.  相似文献   

18.
1. The conditions affecting the activity of RNA polymerase in isolated rat liver nuclei were studied with Mg(2+) or Mn(2+) as activating ions. 2. The enzyme assayed with Mg(2+) and at low ionic strength is saturated by a lower concentration of nucleotide substrates than if assayed with Mn(2+) at low ionic strength or with either ion at high ionic strength. 3. At low and at high ionic strength the incorporation of AMP is affected in a similar way by variations in the temperature of incubation. Preincubation at 37 degrees impairs the AMP incorporation. 4. Heparin stimulates the RNA polymerase activity in the presence of Mn(2+). 5. Both ammonium sulphate and heparin ;restart' the reaction if added after 15min., the effect being more marked with ammonium sulphate than with heparin, and also more marked in the presence of Mn(2+) than of Mg(2+). 6. alpha-Amanitin abolishes the effect of ammonium sulphate and of heparin.  相似文献   

19.
The structure and function of polynucleotide phosphorylase (PNPase) and the exosome, as well as their associated RNA-helicases proteins, are described in the light of recent studies. The picture raised is of an evolutionarily conserved RNA-degradation machine which exonucleolytically degrades RNA from 3′ to 5′. In prokaryotes and in eukaryotic organelles, a trimeric complex of PNPase forms a circular doughnut-shaped structure, in which the phosphorolysis catalytic sites are buried inside the barrel-shaped complex, while the RNA binding domains create a pore where RNA enters, reminiscent of the protein degrading complex, the proteasome. In some archaea and in the eukaryotes, several different proteins form a similar circle-shaped complex, the exosome, that is responsible for 3′ to 5′ exonucleolytic degradation of RNA as part of the processing, quality control, and general RNA degradation process. Both PNPase in prokaryotes and the exosome in eukaryotes are found in association with protein complexes that notably include RNA helicase.  相似文献   

20.
Terminal transferase (TdT), when incubated with a purified(32)P-5"-end-labeled oligonucleotide of defined length in the presence of Co(2+), Mn(2+)or Mg(2+)and 2-mercaptoethanol in cacodylate or HEPES buffer, pH 7.2, exhibits the ability to remove a 3"-nucleotide from one oligonucleotide and add it to the 3"-end of another. When analyzed by urea-PAGE, this activity is observed as a disproportionation of the starting oligonucleotide into a ladder of shorter and longer oligonucleotides distributed around the starting material. Optimal metal ion concentration is 1-2 mM. All three metal ions support this activity with Co(2+)> Mn(2+) congruent with Mg(2+). Oligonucleotides p(dT) and p(dA) are more efficient substrates than p(dG) and p(dC) because the latter may form secondary structures. The dismutase activity is significant even in the presence of dNTP concentrations comparable to those that exist in the nucleus during the G(1)phase of the cell cycle. Using BetaScope image analysis the rate of pyrophosphorolytic dismutase activity was found to be only moderately slower than the poly-merization activity. These results may help explain the GC-richness of immunoglobulin gene segment joins (N regions) and the loss of bases that occur during gene rearrangements in pre-B and pre-T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号