首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxynitrite (ONOO-) is a reactive oxidant formed from superoxide (?O2-) and nitric oxide (?NO), that can oxidize several cellular components, including essential protein, non-protein thiols, DNA, low-density lipoproteins (LDL), and membrane phospholipids. ONOO- has contributed to the pathogenesis of diseases such as stroke, heart disease, Alzheimer's disease, and atherosclerosis. Because of the lack of endogenous enzymes to thwart ONOO- activation, developing a specific ONOO- scavenger is remarkably important. In this study, the ability of hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) to scavenge ONOO- and to protect cells against ONOO- and ROS was investigated. The data gained show that hesperetin can efficiently scavenge authentic ONOO-. In spectrophotometric analysis, the data revealed that hesperetin led to declined ONOO--mediated nitration of tyrosine through electron donation. Hesperetin exhibited significant inhibition on the nitration of bovine serum albumin (BSA) by ONOO- in a dose-dependent manner. Hesperetin also manifested cytoprotection from cell damage induced by ONOO- and ROS. The present study suggests that hesperetin is a powerful ONOO- scavenger and promotes cellular defense activity in the protection against ONOO- involved diseases.  相似文献   

2.
3.
Rebamipide, an antiulcer agent, is known as a potent hydroxyl radical (OH) scavenger. In the present study, we further characterized the scavenging effect of rebamipide against OH generated by ultraviolet (UV) irradiation of hydrogen peroxide (H2O2), and identified the reaction products to elucidate the mechanism of the reaction. Scavenging effect of rebamipide was accessed by ESR using DMPO as a OH-trapping agent after UVB exposure (305 nm) to H2O2 for 1 min in the presence of rebamipide. The signal intensity of OH adduct of DMPO (DMPO-OH) was markedly reduced by rebamipide in a concentration-dependent fashion as well as by dimethyl sulfoxide and glutathione as reference radical scavengers. Their second order rate constant values were 5.62 × 1010, 8.16 × 109 and 1.65 × 1010 M-1 s-1, respectively. As the rebamipide absorption spectrum disappeared during the reaction, a new spectrum grew due to generation of rather specific reaction product. The reaction product was characterized by LC-MS/MS and NMR measurements. Finally, a hydroxylated rebamipide at the 3-position of the 2(1H)-quinolinone nucleus was newly identified as the major product exclusively formed in the reaction between rebamipide and the OH generated by UVB/H2O2. Specific formation of this product explained the molecular characteristics of rebamipide as a potential OH scavenger.  相似文献   

4.
Choi EJ 《Life sciences》2008,82(21-22):1059-1064
We investigated the effects of the chronic administration of hesperetin on the activation of the antioxidant defence system in mice in which oxidative stress had been induced by 7,12-dimethylbenz(a)anthracene (DMBA). Mice were divided randomly into three treatment groups. Hesperetin was administered orally to two of the three groups at 10 and 50 mg/kg body weight for 5 weeks. Subsequently, each group was subdivided randomly into DMBA-treated and untreated groups. The DMBA-treated groups were intragastrically administered a dose of 34 mg/kg BW in corn oil vehicle twice a week for 2 weeks. The TBARS value showed a tendency to decrease following hesperetin treatment; these decreases were significantly greater in the DMBA-treated than the untreated groups. Hesperetin significantly decreased the carbonyl content at the high dose in both DMBA-treated and untreated mice. Catalase and SOD activity were increased by hesperetin; this increase was more pronounced in DMBA-treated than untreated mice. Catalase, Mn-SOD, and CuZn-SOD expression analyses supported these results. Although the GSH-px and GR activity were little affected, hesperetin treatment significantly increased the GSH/GSSG ratio in the DMBA-treated group in a dose-dependent manner. These results suggest that hesperetin shows antioxidant activity and plays a protective role against DMBA-induced oxidative stress.  相似文献   

5.
The flavanone hesperetin is known to decrease basal glucose uptake, although the inhibitory mechanism is largely unknown. Here, we used MDA‐MB‐231 breast cancer cells to investigate the molecular pathways affected by hesperetin. The results indicate that the suppression of glucose uptake is caused by the down‐regulation of glucose transporter 1 (GLUT1). Hesperetin was also found to inhibit insulin‐induced glucose uptake through impaired cell membrane translocation of glucose transporter 4 (GLUT4). In addition, the phosphorylation of the insulin receptor‐beta subunit (IR‐beta) and Akt was suppressed. Hesperetin also decreased cellular proliferation, which is likely due to the inhibition of glucose uptake. Cancer cells are highly dependent on glucose and hesperetin may, therefore, have potential application as an anticancer agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Parkinson’s disease (PD) is a neurodegenerative disorder due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNC). PD finally leads to incapacitating symptoms including motor and cognitive deficits. This study was undertaken to assess protective effect of the flavanone hesperetin against striatal 6-hydroxydopamine lesion and to explore in more detail some underlying mechanisms including apoptosis, inflammation and oxidative stress. In this research study, intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats received hesperetin (50 mg/kg/day) for 1 week. Hesperetin reduced apomorphine-induced rotational asymmetry and decreased the latency to initiate and the total time on the narrow beam task. It also attenuated striatal malondialdehyde and enhanced striatal catalase activity and GSH content, lowered striatal level of glial fibrillary acidic protein as an index of astrogliosis and increased Bcl2 with no significant change of the nuclear factor NF-kB as a marker of inflammation. Hesperetin treatment was also capable to mitigate nigral DNA fragmentation as an index of apoptosis and to prevent loss of SNC dopaminergic neurons. This study indicated the protective effect of hesperetin in an early model of PD via attenuation of apoptosis, astrogliosis marker and oxidative stress and it may be helpful as an adjuvant therapy for management of PD at its early stages.  相似文献   

7.
Sulfasalazine is a prodrug composed by a molecule of 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), linked by an azo bond, which has been shown to be effective in the therapy of inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease, as well as of rheumatic diseases, such as rheumatoid arthritis and ankylosing spondylitis. The precise mechanism of action of sulfasalazine and/or its metabolites has not been completely elucidated, though its antioxidant effects are well established and are probably due to its scavenging effects against reactive oxygen and nitrogen species (ROS and RNS), as well as metal chelating properties, in association to its inhibitory effects over neutrophil oxidative burst. The present work was focused on screening and comparing the potential scavenging activity for an array of ROS (O(2)(?-), H(2)O(2), (1)O(2), ROO(?) and HOCl) and RNS ((?)NO and ONOO(-)), mediated by sulfasalazine and its metabolites 5-ASA and SP, using validated in vitro screening systems. The results showed that both 5-ASA and sulfasalazine were able to scavenge all the tested ROS while SP was practically ineffective in all the assays. For HOCl, (1)O(2), and ROO(?), 5-ASA showed the best scavenging effects. A new and important finding of the present study was the strong scavenging effect of 5-ASA against (1)O(2). 5-ASA was shown to be a strong scavenger of (?)NO and ONOO(-). Sulfasalazine was also able to scavenge these RNS, although with a much lower potency than 5-ASA. SP was unable to scavenge (?)NO in the tested concentrations but was shown to scavenge ONOO(-), with a higher strength when the assay was performed in the presence of 25 mM bicarbonate, suggesting further scavenging of oxidizing carbonate radical. In conclusion, the ROS- and RNS-scavenging effects of sulfasalazine and its metabolites shown in this study may contribute to the anti-inflammatory effects mediated by sulfasalazine through the prevention of the oxidative/nitrative/nitrosative damages caused by these species.  相似文献   

8.
Diabetic bone disease is associated with increased oxidative damage and 2-deoxy-d-ribose (dRib) is used to induce oxidative damage similar to that observed in diabetics. To determine if hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) could influence osteoblast dysfunction induced by dRib, osteoblastic MC3T3-E1 cells were treated with dRib and hesperetin. Then, markers of osteoblast function and oxidative damage were examined. Hesperetin (10−7–10−5 M) caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and total antioxidant potential of MC3T3-E1 cells in the presence of 20 mM dRib (p < 0.05). Moreover, hesperetin (10−7 M) decreased cellular protein carbonyl (PCO), advanced oxidation protein products (AOPP), and malondialdehyde (MDA) contents of osteoblastic MC3T3-E1 cells in the presence of 20 mM dRib. These results demonstrate that hesperetin attenuates dRib-induced damage, suggesting that hesperetin may be a useful dietary supplement for minimizing oxidative injury in diabetes related bone diseases.  相似文献   

9.
In the present study, triphlorethol-A, a phlorotannin, was isolated from Ecklonia cava and its antioxidant properties were investigated. Triphlorethol-A was found to scavenge intracellular reactive oxygen species (ROS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and thus prevented lipid peroxidation. The radical scavenging activity of triphlorethol-A protected the Chinese hamster lung fibroblast (V79-4) cells exposed to hydrogen peroxide (H2O2) against cell death, via the activation of ERK protein. Furthermore, triphlorethol-A reduced the apoptotic cells formation induced by H2O2. Triphlorethol-A increased the activities of cellular antioxidant enzymes like, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Hence, from the present study, it is suggestive that triphlorethol-A protects V79-4 cells against H2O2 damage by enhancing the cellular antioxidative activity.  相似文献   

10.
Destructive bone diseases caused by osteolysis are increasing in incidence. They are characterized by an excessive imbalance of osteoclast formation and activation. During osteolysis, the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways are triggered by receptor activator of NF-κB ligand (RANKL), inflammatory factors, and oxidative stress. Previous studies have indicated that the common flavanone glycoside compound hesperetin exhibits anti-inflammatory and antioxidant activity by inhibition of NF-κB and MAPK signaling pathways. However, the direct relationship between hesperetin and osteolysis remain unclear. In the present study, we investigated the effects of hesperetin on lipopolysaccharide (LPS)-induced osteoporosis and elucidated the related mechanisms. Hesperetin effectively suppressed RANKL-induced osteoclastogenesis, osteoclastic bone resorption, and F-actin ring formation in a dose-dependent manner. It also significantly suppressed the expression of osteoclast-specific markers including tartrate-resistant acid phosphatase, matrix metalloproteinase-9, cathepsin K, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1. Furthermore, it inhibited osteoclastogenesis by inhibiting activation of NF-κB and MAPK signaling, scavenging reactive oxygen species, and activating the nuclear factor E2 p45-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathway. Consistent with in vitro results, hesperetin effectively ameliorated LPS-induced bone loss, reduced osteoclast numbers, and decreased the RANKL/OPG ratio in vivo. As such, our results suggest that hesperetin may be a great candidate for developing a novel drug for destructive bone diseases such as periodontal disease, tumor bone metastasis, rheumatoid arthritis, and osteoporosis.  相似文献   

11.
The chemical reduction and oxidation (redox) properties of alpha-lipoic acid (LA) suggest that it may have potent antioxidant potential. A significant number of studies now show that LA and its reduced form, dihydrolipoic acid (DHLA), directly scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) species and protect cells against a host of insults where oxidative stress is part of the underlying etiology. However, owing to its limited and transient accumulation in tissues following oral intake, the efficacy of nonprotein-bound LA to function as a physiological antioxidant has been questioned. Herein, we review the evidence that the micronutrient functions of LA may be more as an effector of important cellular stress response pathways that ultimately influence endogenous cellular antioxidant levels and reduce proinflammatory mechanisms. This would promote a sustained improvement in cellular resistance to pathologies where oxidative stress is involved, which would not be forthcoming if LA solely acted as a transient ROS scavenger.  相似文献   

12.
Diet can be one of the most important factors that influence risks for cardiovascular diseases. Hesperetin, a flavonoid present in grapefruits and oranges, is one candidate that may benefit the cardiovascular system. In this study, we have investigated the effect of hesperetin on the platelet-derived growth factor (PDGF)-BB-induced proliferation of primary cultured rat aortic vascular smooth muscle cells (VSMCs). Hesperetin significantly inhibited 50 ng/ml PDGF-BB-induced rat aortic VSMCs proliferation and [(3)H]-thymidine incorporation into DNA at concentrations of 5, 25, 50, and 100 microM. In accordance with these findings, hesperetin revealed blocking of the PDGF-BB-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells. Western blot showed that hesperetin inhibited not only phosphorylation of retinoblastoma protein (pRb) and expressions of cyclin A, cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2) as well as proliferating cell nuclear antigen (PCNA) protein, but also downregulation of cyclin-dependent kinase inhibitor (CKI) p27(kip1), while did not affect CKI p21(cip1), p16(INK4), p53, and CDK4 expressions as well as early signaling transductions such as PDGF beta-receptor, extracellular signal-regulated kinase (ERK) 1/2, Akt, p38, and JNK phosphorylation. These results suggest that hesperetin inhibits PDGF-BB-induced rat aortic VSMCs proliferation via G(0)/G(1) arrest in association with modulation of the expression or activation of cell-cycle regulatory proteins, which may contribute to the beneficial effect of grapefruits and oranges on cardiovascular system.  相似文献   

13.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (•OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of •OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its •OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of •OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of •OH from 1O2, and that spin trap-mediated •OH generation hardly occurs with DEPMPO.  相似文献   

14.
Hesperetin ester and ether derivatives possessing a long alkyl chain were synthesized for examining their hypocholesterolemic activities in high cholesterol-fed mice. Hesperetin 7-O-lauryl ether (4b) and hesperetin 7-O-oleyl ether (4e) exhibited strong cholesterol-lowering effects.  相似文献   

15.
The trinitrobenzene sulfonic acid (TNBS) induced colitis model is used to investigate the pathogenesis of ulcerative colitis. Colon inflammation and apoptosis are associated with tissue damage in ulcerative colitis. Hesperetin is a natural flavonoid that exhibits antioxidative, anti-inflammatory and anti-apoptotic properties. We investigated the effects of hesperetin on tumor necrosis factor-alpha (TNF-α), protein tyrosine phosphatase, receptor type C (CD45), caspase-3 and Bax expressions in TNBS in induced colitis model in rats. Male rats were divided into three groups: control group treated with 1 ml physiological saline, colitis group, and colitis + hesperetin group treated with TNBS and hesperetin. Hesperetin treatment was applied for 10 days starting 3 days prior to colitis induction. At the end of the experiment, TNF-α, CD45, caspase-3 and Bax expressions in colon tissue were determined using indirect immunohistochemistry. Increased immunoreactivity of both inflammation markers, TNF-α, CD45, and apoptotic markers, caspase-3 and Bax, was detected in the colitis group. Hesperetin treatment effected significant reduction of all parameters. Hesperetin treatment prevents colon damage owing to its anti-inflammatory and anti-apoptotic effects.  相似文献   

16.
Cardiac remodelling is a major determinant of heart failure (HF) and is characterised by cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. Hesperetin, which belongs to the flavonoid subgroup of citrus flavonoids, is the main flavonoid in oranges and possesses multiple pharmacological properties. However, its role in cardiac remodelling remains unknown. We determined the effect of hesperetin on cardiac hypertrophy, fibrosis and heart function using an aortic banding (AB) mouse. Male, 8–10-week-old, wild-type C57 mice with or without oral hesperetin administration were subjected to AB or a sham operation. Our data demonstrated that hesperetin protected against cardiac hypertrophy, fibrosis and dysfunction induced by AB, as assessed by heart weigh/body weight, lung weight/body weight, heart weight/tibia length, echocardiographic and haemodynamic parameters, histological analysis, and gene expression of hypertrophic and fibrotic markers. Also, hesperetin attenuated oxidative stress and myocytes apoptosis induced by AB. The inhibitory effect of hesperetin on cardiac remodelling was mediated by blocking PKCα/βII-AKT, JNK and TGFβ1-Smad signalling pathways. In conclusion, we found that the orange flavonoid hesperetin protected against cardiac remodelling induced by pressure overload via inhibiting cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. These findings suggest a potential therapeutic drug for cardiac remodelling and HF.  相似文献   

17.
The anti-proliferative activity of hesperetin, hesperidin, neohesperidin and rutin was evaluated on human hepatoma cell lines (Hep G2) and correlated to their antioxidant activity. The results obtained showed strong anti-proliferative effects of hesperidin and neohesperidin, considerably higher than the other two additives. Hesperetin induced caspase-3 activation, release of LDH and endogenous accumulation of putrescine. Cell cycle distribution seems to indicate that the inhibitory effects of polyphenols on cell growth could be due to G0/G1 block, and activation of apoptotic pathway in the presence of hesperetin. Our results underline also that the glycone forms show reduced scavenging activity against DPPH, but present a remarkable inhibition of cell proliferation and low cytotoxicity.  相似文献   

18.
Nitrogen dioxide (NO2) is a key biological oxidant. It can be derived from peroxynitrite via the interaction of nitric oxide with superoxide, from nitrite with peroxidases, or from autoxidation of nitric oxide. In this study, submicromolar concentrations of NO2 were generated in < 1 μs using pulse radiolysis, and the kinetics of scavenging NO2 by glutathione, cysteine, or uric acid were monitored by spectrophotometry. The formation of the urate radical was observed directly, while the production of the oxidizing radical obtained on reaction of NO2 with the thiols (the thiyl radical) was monitored via oxidation of 2,2′-azino-bis-(3-ethylthiazoline-6-sulfonic acid). At pH 7.4, rate constants for reaction of NO2 with glutathione, cysteine, and urate were estimated as 2 × 107, 5 × 107, and 2 × 107 M−1 s−1, respectively. The variation of these rate constants with pH indicated that thiolate reacted much faster than undissociated thiol. The dissociation of urate also accelerated reaction with NO2 at pH > 8. The thiyl radical from GSH reacted with urate with a rate constant of 3 × 107 M−1 s−1. The implications of these values are: (i) the lifetime of NO2 in cytosol is < 10 μs; (ii) thiols are the dominant ‘sink’ for NO2 in cells/tissue, whereas urate is also a major scavenger in plasma; (iii) the diffusion distance of NO2 is 0.2 μm in the cytoplasm and < 0.8 μm in plasma; (iv) urate protects GSH against depletion on oxidative challenge from NO2; and (v) reactions between NO2 and thiols/urate severely limit the likelihood of reaction of NO2 with NO• to form N2O3 in the cytoplasm.  相似文献   

19.
F-actin plays a crucial role in fundamental cellular processes, and is extremely susceptible to peroxynitrite attack due to the high abundance of tyrosine in the peptide. Methionine sulfoxide reductase (Msr) B1 is a selenium-dependent enzyme (selenoprotein R) that may act as a reactive oxygen species (ROS) scavenger. However, its function in coping with reactive nitrogen species (RNS)-mediated stress and the physiological significance remain unclear. Thus, the present study was conducted to elucidate the role and mechanism of MsrB1 in protecting human lens epithelial (hLE) cells against peroxynitrite-induced F-actin disruption. While exposure to high concentrations of peroxynitrite and gene silencing of MsrB1 by siRNA alone caused disassembly of F-actin via inactivation of extracellular signal-regulated kinase (ERK) in hLE cells, the latter substantially aggravated the disassembly of F-actin triggered by the former. This aggravation concurred with elevated nitration of F-actin and inactivation of ERK compared with that induced by the peroxynitrite treatment alone. In conclusion, MsrB1 protected hLE cells against the peroxynitrite-induced F-actin disruption, and the protection was mediated by inhibiting the resultant nitration of F-actin and inactivation of ERKs.  相似文献   

20.
Aromatase is a key enzyme in estrogen synthesis, and aromatase inhibitors (AIs) have been developed for treating estrogen-responsive breast cancer. Because of its nondiscriminatory inhibition of estrogen synthesis, patients treated with AIs also contract diseases typically associated with estrogen deficiency, such as bone deterioration. Our laboratory found that the citrus flavonone hesperetin could inhibit aromatase, and the selective estrogen receptor modulator nature of flavonoid might counteract the undesirable effect of AIs. In the present study, we employed an established postmenopausal model for breast carcinogenesis to examine the drug interaction between hesperetin and letrozole, one of the AIs. Athymic mice were ovariectomized and transplanted with aromatase-overexpressing MCF-7 cells (MCF-7aro). Hesperetin was administered in the diet at 5000 ppm, and letrozole was injected sc at different doses. Results showed that either hesperetin or letrozole could reduce plasma estrogen level and inhibit tumor growth. Most importantly, the letrozole-induced bone loss measured as bone volume fraction was reversed by hesperetin without compromising on the deterrence of MCF-7aro tumor growth. Taken together, the present study suggested that hesperetin could be a potential cotherapeutic agent to AI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号