首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Basal body replication during estrogen-driven ciliogenesis in the rhesus monkey (Macaca mulatta) oviduct has been studied by stereomicroscopy, rotation photography, and serial section analysis. Two pathways for basal body production are described: acentriolar basal body formation (major pathway) where procentrioles are generated from a spherical aggregate of fibers; and centriolar basal body formation, where procentrioles are generated by the diplosomal centrioles. In both pathways, the first step in procentriole formation is the arrangement of a fibrous granule precursor into an annulus. A cartwheel structure, present within the lumen of the annulus, is composed of a central cylinder with a core, spoke components, and anchor filaments. Tubule formation consists of an initiation and a growth phase. The A tubule of each triplet set first forms within the wall material of the annulus in juxtaposition to a spoke of the cartwheel. After all nine A tubules are initiated, B and C tubules begin to form. The initiation of all three tubules occurs sequentially around the procentriole. Simultaneous with tubule initiation is a nonsequential growth of each tubule. The tubules lengthen and the procentriole is complete when it is about 200 mµ long. The procentriole increases in length and diameter during its maturation into a basal body. The addition of a basal foot, nine alar sheets, and a rootlet completes the maturation process. Fibrous granules are also closely associated with the formation of these basal body accessory structures.  相似文献   

2.
The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies.  相似文献   

3.
The vertebrate main and accessory olfactory bulbs (MOB and AOB) are the first synaptic sites in the olfactory pathways. The MOB is a cortical structure phylogenetically well conserved in its laminar structure and overall synaptic organization, while the AOB has significant species variation in size. In order to better understand signal processing in the two olfactory systems and the species differences, immunocytochemical staining and analysis were done of the neuronal expression patterns of the calcium-binding proteins calbindin D28k (CB), parvalbumin (PV), and calretinin (CR) in the MOB and AOB in a marsupial species, the gray short-tailed opossum, Monodelphis domestica. In the MOB, antibody to CB labeled periglomerular cells, superficial short axon cells / Van Gehuchten cells; antibody to PV labeled Van Gehuchten cells; and antibody to CR immunostained periglomerular cells, superficial short axon cells / Van Gehuchten cells, and granule cells. In the AOB, CB immunoreactivity was detected in periglomerular cells and a subpopulation of granule cells; antibody to PV labeled the superficial short axon cells / Van Gehuchten cells and granule cells; and antibody to CR labeled a small number of periglomerular cells, superficial short axon cells / Van Gehuchten cells, and granule cells. These results showed that the patterns of CB, PV, and CR expression differ in the opossum main and accessory olfactory bulbs and differ from that in other animal species. These varying patterns of neuronal immunostaining may be related to the different functions of the main and accessory olfactory bulbs and to the differing signal processing features.  相似文献   

4.
Postulated pathways between neurones in hippocampus are briefly described, as are experiments demonstrating potentiation. It is suggested that variable synapses between the perforant path and granule cells may be acting like informons, and that inhibitory synapses from basket cells to granule cells may be performing the associated function of reinforcement.Methods for simulating the behaviour of a granule/basket cell pair, based on these two hypotheses, are described; it is explained how such a system can be used to predict the behaviour of a population of cells if all granule cells and all basket cells are similarly excited. The limitations of the present simulation are pointed out; suggestions are made for the inclusion of further details in future work.  相似文献   

5.
6.
Germ granules are cytoplasmic assemblies of RNA-binding proteins (RBPs) required for germ cell development and fertility. During the first four cell divisions of the Caenorhabditis elegans zygote, regulated assembly of germ (P) granules leads to their selective segregation to the future germ cell. Here we investigate the role of DLC-1, a hub protein implicated in stabilization and function of diverse protein complexes, in maintaining P granule integrity. We find that DLC-1 directly interacts with several core P granule proteins, predominantly during embryogenesis. The loss of dlc-1 disrupts assembly of P granule components into phase-separated organelles in the embryos, regardless of whether or not DLC-1 directly interacts with these proteins. Finally, we infer that P granule dispersal in the absence of dlc-1 is likely independent of DLC-1’s function as a subunit of the dynein motor and does not result from a loss of cell polarity.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV 1) has evolved to encode multifunctional accessory proteins to promote the viral life cycle. Nef, a HIV 1 encoded accessory protein that originally thought to be a negative factor that inhibited viral replications, has been reported increasing HIV1 viral particle infectivity through a still unknown mechanism. Recently, lots of experimental evidences showed that Nef could extensively interact with multiple key factors of protein intracellular trafficking pathways, such as adaptor protein families (APs), to promote the HIV pathogenesis through down-regulation of the membrane localization of MHC1 and CD4 molecules.Taking together with the current progresses of the biological nature of Nef in recent years, here, we proposed that the Nef also could increase the infectivity of viral particle possibly through affecting the protein transport pathways of HIV1 factors or other host cellular factors that promote viral assembly or budding. If true, this will let us better understand how Nef manipulate the host cell environment to promote the HIV pathogenicity and will also provide more choices for developing novel therapeutic strategies.  相似文献   

8.
In flowering plants, the egg and sperm cells form within haploid gametophytes. The female gametophyte of Arabidopsis consists of two gametic cells, the egg cell and the central cell, which are flanked by five accessory cells. Both gametic and accessory cells are vital for fertilization; however, the mechanisms that underlie the formation of accessory versus gametic cell fate are unknown. In a screen for regulators of egg cell fate, we isolated the lachesis (lis) mutant which forms supernumerary egg cells. In lis mutants, accessory cells differentiate gametic cell fate, indicating that LIS is involved in a mechanism that prevents accessory cells from adopting gametic cell fate. The temporal and spatial pattern of LIS expression suggests that this mechanism is generated in gametic cells. LIS is homologous to the yeast splicing factor PRP4, indicating that components of the splice apparatus participate in cell fate decisions.  相似文献   

9.
The rate of cerebellar granule cell migration is altered by neonatal hypo- and hyperthyroidism in a manner similar to previously reported effects on the growth of granule cell axons, the parallel fibers, suggesting that the two processes may be intimately linked. Altered rates of granule cell acquisition in these experimental animals reflect changes in germinal cell proliferation in the external granular layer (EGL), movement of postmitotic cells within the EGL, as well as the rate and time course of granule cell migration. Results of this study support the hypothesis that granule cells migrate to the internal granular layer by translocation of the cell body through the descending portion of the growing parallel fiber, rather than by amoeboid-like migration of the perikaryon trailing the elongating parallel fiber behind.  相似文献   

10.
Summary Compound eyes of larval and first postlarval grass shrimp (Palaemonetes pugio Holthuis) were studied with light and electron microscopy following adaptation to darkness or bright light. Larvae have well-developed apposition eyes, including 3 main types of accessory screening and reflecting pigments and a fourth class of putatively reflective granules recently described in adult shrimps. Rhabdoms contain orthogonally layered microvilli, and by the last larval stage, 8 retinular cells. Ocular accessory pigments in both light- and dark-adapted larvae are distributed much like those of light-adapted adults, but the distal mass of reflecting pigment is concentrated dorsally in larvae and ventrally in adults. Since larvae swim upside-down, reflecting pigment is oriented downward in all developmental stages and may function for countershading. Light and dark adaptational migrations of all 3 major accessory pigments commence abruptly at metamorphosis to the first postlarva. Upon dark adaptation in postlarvae, superposition optics remain impossible because (1) distal screening pigment migrates only slightly, (2) no clear zone has developed, and (3) the crystalline cones remain circular in cross section. Nevertheless, a slight improvement in photon catch is expected due to extensive redistributions of reflecting pigment and retinular cell screening pigment granules.
  相似文献   

11.
The lesser electric ray, Narcine brasiliensis, is a small, demersal ray capable of generating electricity through its main and accessory electric organs. Although closely related to the large piscivorous torpedo rays, it differs in size, habitat, and prey. Based on these differences, we hypothesized that the main electric organs are used for predator defense rather than feeding and that the accessory electric organs, specific to this species, are used for intraspecific communication. We found that the mass of the main and accessory electric organs were both significantly smaller in females than in males. Whereas the main electro-somatic index does not change with growth, the accessory electro-somatic index increases, providing support for the accessory electric organs’ use in intraspecific communication. We characterized the discharge properties of the main electric organ throughout ontogeny by simulating a predation attempt on the ray. Rays always responded by generating electric organ discharges (EODs) and by flexing the tail dorsoventrally and laterally. The main EOD amplitude, measured directly at the source, increased logarithmically with disc width to a maximum measured amplitude of 56 V. Minimum amplitude was more variable, but followed a positive power relationship with disc width. Neonates produced trains comprised of significantly more EODs than the adults. Over the course of the first set of discharges, all age classes showed a decrease in fundamental frequency and an increase in train duration. In contrast to these defensive responses, the rays did not generate EODs while foraging or feeding on live prey.  相似文献   

12.
Sexual dimorphisms of the vomeronasal organ (VNO) and the accessory olfactory bulb (AOB) of the mandarin voleMicrotus mandarinus Milne-Edwards, 1871 and reed voleM. fortis Büchner, 1889 are reported for the first time in the present work. The thickness and length of the vomeronasal epithelium (VE) and the nuclear size of the receptor cells, the width and length of the granule cell zone, the width and length of the mitral cell zone, and the density of the mitral cells were surveyed. The thickness and length of the vomeronasal epithelium (VE), the length of the granule cell zone and the mitral cell zone, and the densities of mitral cells were significantly different between male and female reed voles. Male and female mandarin voles had no significant differences in any of these parameters. Polygamous reed voles had a greater degree of sexual dimorphism in VNO and AOB than did monogamous mandarin voles. The present results provide evidence to the hypothesis that the degree of sexual dimorphism may be related to the mating system.  相似文献   

13.
The cockroach Leucophaea maderae was the first animal in which lesion experiments localized an endogenous circadian clock to a particular brain area, the optic lobe. The neural organization of the circadian system, however, including entrainment pathways, coupling elements of the bilaterally distributed internal clock, and output pathways controlling circadian locomotor rhythms are only recently beginning to be elucidated. As in flies and other insect species, pigment-dispersing hormone (PDH)-immunoreac- tive neurons of the accessory medulla of the cockroach are crucial elements of the circadian system. Lesions and transplantation experiments showed that the endogeneous circadian clock of the brain resides in neurons associated with the accessory medulla. The accessory medulla is organized into a nodular core receiving photic input, and into internodular and peripheral neuropil involved in efferent output and coupling input. Photic entrainment of the clock through compound eye photoreceptors appears to occur via parallel, indirect pathways through the medulla. Light-like phase shifts in circadian locomotor activity after injections of γ-aminobutyric acid (GABA)- or Mas-allatotropin into the vicinity of the accessory medulla suggest that both substances are involved in photic entrainment. Extraocular, cryptochrome-based photoreceptors appear to be present in the optic lobe, but their role in photic entrainment has not been examined. Pigment-dispersing hormone-immunoreactive neurons provide efferent output from the accessory medulla to several brain areas and to the peripheral visual system. Pigment-dispersing hormone-immunoreactive neurons, and additional heterolateral neurons are, furthermore, involved in bilateral coupling of the two pacemakers. The neuronal organization, as well as the prominent involvement of GABA and neuropeptides, shows striking similarities to the organization of the suprachiasmatic nucleus, the circadian clock of the mammalian brain.  相似文献   

14.
Aims and objectivesAtrial fibrillation (AF) with preexcitation can be life threatening. Our study evaluated the incidence, clinical features, electrophysiologic characteristics and outcomes of patients presenting with AF and fast ventricular rates associated with an antegrade conducting accessory pathway.MethodsHospital data of patients who had undergone electrophysiology study and radiofrequency ablation for AF and Wolff-Parkinson-White (WPW) syndrome was retrospectively evaluated over 10 years and prospective data was further collected over 1 year. Out of 2876 patients undergoing electrophysiology study, 320 patients had manifest preexcitation on ECG. Forty one patients who had presented with AF and fast ventricular rates were included in the study.ResultsForty one (12.8%) patients out of 320 patients of WPW syndrome patients presented with AF and fast ventricular rates. Mean age of presentation was 38.5 ± 12.3 yrs. Twenty nine (72.5%) were male. Most common presenting features were palpitations, presyncope and syncope. Twenty eight (71.1%) patients were electrically cardioverted on presentation, of which two patients having narrow complex tachycardia, when given adenosine, developed AF and fast ventricular rates and had to be electrically cardioverted. Intravenous amiodarone converted AF to sinus rhythm in 11 (28.9%) patients. Right postero-septal pathway (33.3%) followed by coronary sinus epicardial pathway (22.9%) were the most commonly located pathways associated with AF. Five (12.2%) patients had multiple pathways. CS diverticulum was seen in 6 (14.7%) patients. Ablation was done during AF in 6 (14.7%) patients. All except one had immediate successful ablation. One patient had a recurrence of preexcitation on follow up and successfully ablated during redo procedure.ConclusionAF with WPW syndrome is not uncommon. AF is commonly associated with posteriorly located accessory pathways, CS diverticulum and multiple pathways. Radiofrequency ablation has good outcomes.  相似文献   

15.
The new family Lobatocerebridae, Rieger, contains a group of turbellariomorph worms in the annelid line of evolution. The fine structural organization of the body wall, the digestive tract, and parts of the central and peripheral nervous system are described and the findings are discussed in light of general invertebrate cytology. The epidermis and gastrodermis contain a basal granule cell system which is structurally very similar to the neuroglia cell system of the nervous system. The continuity of the neuroglia cell system, and the epidermal basal granule cell system and the basal granule cell system in the digestive epithelia suggests the existence of a single glial-basal granule cell system, similar to the gliointerstitial cell system first recognized in the Mollusca (see Nicaise, '73). The Annelida may show a dual (ectodermal and mesodermal) origin of such a gliointerstitial cell system as suggested by similarities in the epidermal basal cell system in the Oligochaeta and of certain epidermal and gastrodermal cells in polychaete regeneration with neuroglia in the Annelida. The structural similarity of neuroglia and basal granule cells in Lobatocerebridae may be the result of similarity in the formation, maintenance, or regulation of the extracellular matrix.  相似文献   

16.
Corema (C.) album is a shrub endemic to the Atlantic coast and has been described as yielding beneficial effects for human health. Nevertheless, studies concerning the bioactivity of C. album leaves are scarce. This study aims at investigating the anticancer potential and mode of action, of an hydroethanolic extract of C. album leaves (ECAL) on triple-negative breast cancer. This is a poor survival breast cancer subtype, owing to its high risk of distant reappearance, metastasis rates and the probability of relapse. The ECAL ability to prevent tumor progression through (i) the inhibition of cell proliferation (cell viability); (ii) the induction of apoptosis (morphological changes, TUNEL assay, caspase-3 cleaved) and (iii) the induction of DNA damage (PARP1 and γH2AX) with (iv) the involvement of NF-κB and of ERK1/2 pathways (AlphaScreen assay) was evaluated. ECAL activated the apoptotic pathway (through caspase-3) along with the inhibition of ERK and NF-κB pathways causing DNA damage and cell death. The large polyphenolic content of ECAL was presumed to be accountable for these effects. The extract of C. album leaves can target multiple pathways and, thus, can block more than one possible means of disease progression, evidencing the anticancer therapeutic potential from a plant source.  相似文献   

17.
CNKSR2 is a synaptic scaffolding molecule that is encoded by the CNKSR2 gene located on the X chromosome. Heterozygous mutations to CNKSR2 in humans are associated with intellectual disability and epileptic seizures, yet the cellular and molecular roles for CNKSR2 in nervous system development and disease remain poorly characterized. Here, we identify a molecular complex comprising CNKSR2 and the guanine nucleotide exchange factor (GEF) for ARF small GTPases, CYTH2, that is necessary for the proper development of granule neurons in the mouse hippocampus. Notably, we show that CYTH2 binding prevents proteasomal degradation of CNKSR2. Furthermore, to explore the functional significance of coexpression of CNKSR2 and CYTH2 in the soma of granule cells within the hippocampal dentate gyrus, we transduced mouse granule cell precursors in vivo with small hairpin RNAs (shRNAs) to silence CNKSR2 or CYTH2 expression. We found that such manipulations resulted in the abnormal localization of transduced cells at the boundary between the granule cell layer and the hilus. In both cases, CNKSR2-knockdown and CYTH2-knockdown cells exhibited characteristics of immature granule cells, consistent with their putative roles in neuron differentiation. Taken together, our results demonstrate that CNKSR2 and its molecular interaction partner CYTH2 are necessary for the proper development of dentate granule cells within the hippocampus through a mechanism that involves the stabilization of a complex comprising these proteins.  相似文献   

18.
The neuronal organization of the accessory olfactory bulb (AOB), which receives sensory information from the vomeronasal organ, was described in a squamate reptile (Podarcis hispanica) by means of light microscopy. Using the Golgi-impregnation method, seven neuronal types could be distinguished: Periglomerular cells constitute a morphologically heterogeneous population of small neurons located between and around the glomeruli. The mitral cells are diffusely distributed in the AOB. Their cell bodies are usually located within the mitral cell layer, but some of them could be also observed in the plexiform layers. Mitral cells were classified into three subgroups on the basis of their sizes and dendritic tree morphologies. Thus, the “outer mitral cells” have the biggest cell bodies, and their distal secondary dendrites are mainly distributed rostrocaudally in the external plexiform layer. The “inner mitral cells” have large cell bodies, and their secondary dendrites are distributed dorsoventrally and are located deeper than those of the other two subgroups. The third type, the “small mitral cells,” is the smallest one among mitral cells in the AOB, and from their cell bodies, only two main dendritic trunks arise. The granule cells are composed of several categories based on their different cell body locations and dendritic tree morphologies. Thus, the “superficial granule cells” are located exclusively in the external plexiform layer and have small dendritic fields. The “middle granule cells” have fusiform cell bodies—situated in the internal plexiform layer—and present a wide dendritic projection area. Finally, the “deep granule cells” are distributed throughout the granule cell layer and include a great variety of dendritic tree morphologies. The distribution and morphological features of all neuronal types constituting the AOB of Podarcis were compared with those reported on other vertebrates. The results suggest that the lamination pattern and neuronal organization of the AOB in lizards are more similar to that of mammals than to that of the remaining vertebrates.  相似文献   

19.
The bacterial twin-arginine (Tat) pathway serves in the exclusive secretion of folded proteins with bound cofactors. While Tat pathways in Gram-negative bacteria and chloroplast thylakoids consist of conserved TatA, TatB and TatC subunits, the Tat pathways of Bacillus species and many other Gram-positive bacteria stand out for their minimalist nature with the core translocase being composed of essential TatA and TatC subunits only. Here we addressed the question whether the minimal TatAyCy translocase of Bacillus subtilis recruits additional cellular components that modulate its activity. To this end, TatAyCy was purified by affinity- and size exclusion chromatography, and interacting co-purified proteins were identified by mass spectrometry. This uncovered the cell envelope stress responsive LiaH protein as an accessory subunit of the TatAyCy complex. Importantly, our functional studies show that Tat expression is tightly trailed by LiaH induction, and that LiaH itself determines the capacity and quality of TatAyCy-dependent protein translocation. In contrast, LiaH has no role in high-level protein secretion via the general secretion (Sec) pathway. Altogether, our observations show that protein translocation by the minimal Tat translocase TatAyCy is tightly intertwined with an adequate bacterial response to cell envelope stress. This is consistent with a critical need to maintain cellular homeostasis, especially when the membrane is widely opened to permit passage of large fully-folded proteins via Tat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号