首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we examined the role of protein phosphorylation/dephosphorylation in the transport properties of the wheat ( Triticum aestivum ) root malate efflux transporter underlying Al resistance, TaALMT1. Pre-incubation of Xenopus laevis oocytes expressing TaALMT1 with protein kinase inhibitors (K252a and staurosporine) strongly inhibited both basal and Al3+-enhanced TaALMT1-mediated inward currents (malate efflux). Pre-incubation with phosphatase inhibitors (okadaic acid and cyclosporine A) resulted in a modest inhibition of the TaALMT1-mediated currents. Exposure to the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), enhanced TaALMT1-mediated inward currents. Since these observations suggest that TaALMT1 transport activity is regulated by PKC-mediated phosphorylation, we proceeded to modify candidate amino acids in the TaALMT1 protein in an effort to identify structural motifs underlying the process regulating phosphorylation. The transport properties of eight single point mutations (S56A, S183A, S324A, S337A, S351-352A, S384A, T323A and Y184F) generated in amino acid residues predicted to be phosphorylation sites and examined electrophysiologically. The basic transport properties of mutants S56A, S183A, S324A, S337A, S351-352A, T323A and Y184F were not altered relative to the wild-type TaALMT1. Likewise the sensitivity of these mutants to staurosporine resembled that observed for the wild-type transporter. However, the mutation S384A was noticeable, as in oocytes expressing this mutant protein TaALMT1-mediated basal and Al-enhanced currents were significantly inhibited, and the currents were insensitive to staurosporine or PMA. These findings indicate that S384 is an essential residue regulating TaALMT1 activity via direct protein phosphorylation, which precedes Al3+ enhancement of transport activity.  相似文献   

2.
3.
Tang  C.  Diatloff  E.  Rengel  Z.  McGann  B. 《Plant and Soil》2001,236(1):1-10
Subsurface soil acidity coupled with high levels of toxic Al is a major limiting factor in wheat production in many areas of the world. This study examined the effect of subsurface soil acidity on the growth and yield of two near-isogenic wheat genotypes differing in Al tolerance at a single genetic locus in reconstructed soil columns. In one experiment, plants were grown in columns with limed topsoil and limed or acidic subsurface soils, and received water only to the subsurface soil at a late part of the growth period. While shoot dry weight, ear number and grain yield of Al-tolerant genotype (ET8) were not affected by subsurface soil acidity, liming subsurface soil increased shoot weight and grain yield of Al-sensitive genotype (ES8) by 60% and ear number by 32%. Similarly, root length density of ET8 was the same in the limed and acidic subsurface soils, while the root length density of ES8 in the acidic subsurface soil was only half of that in the limed subsurface soil. In another experiment, plants were grown with limed topsoil and acidic subsurface soil under two watering regimes. Both genotypes supplied with water throughout the soil column produced almost twice the dry weight of those receiving water only in the subsurface soil. The tolerant genotype ET8 had shoot biomass and grain yield one-third higher than ES8 when supplied with water throughout the whole column, and had yield 11% higher when receiving water in the subsurface soil only. The tolerant genotype ET8 produced more than five times the root length in the acidic subsurface soil compared to ES8. Irrespective of watering regime, the amount of water added to maintain field capacity of the soil was up to 2-fold higher under ET8 than under ES8. The results suggest that the genotypic variation in growth and yield of wheat grown with subsurface soil acidity results from the difference in root proliferation in the subsurface soil and hence in utilizing nutrient and water reserves in the subsurface soil layer.  相似文献   

4.
Abstract. White lupin ( Lupinus albus L.) was grown for 13 weeks in a phosphorus (P) deficient calcareous soil (20% CaCO3, pH(H2O)7.5) which had been sterilized prior to planting and fertilized with nitrate as source of nitrogen. In response to P deficiency, proteoid roots developed which accounted for about 50% of the root dry weight. In the rhizosphere soil of the proteoid root zones, the pH dropped to 4.8 and abundant white precipitates became visible. X-ray spectroscopy and chemical analysis showed that these precipitates consisted of calcium citrate. The amount of citrate released as root exudate by 13-week-old plants was about 1 g plant−1, representing about 23% of the total plant dry weight at harvest. In the rhizosphere soil of the proteoid root zones the concentrations of available P decreased and of available Fe, Mn and Zn increased. The strong acidification of the rhizosphere and the cation/anion uptake ratio of the plants strongly suggests that proteoid roots of white lupin excrete citric acid, rather than citrate, into the rhizosphere leading to intensive chemical extraction of a limited soil volume. In a calcareous soil, citric acid excretion leads to dissolution of CaCO3 and precipitation of calcium citrate in the zone of proteoid roots.  相似文献   

5.
European cultivars of white lupin (Lupinus albus L.) grow poorly in limed or calcareous soils. However, Egyptian genotypes are grown successfully in highly calcareous soil and show no stress symptoms. To examine their physiological responses to alkaline soil and develop potential screens for tolerance, three experiments were conducted in limed and non-limed (neutral pH) soil. Measurements included net CO2 uptake, and the partitioning of Fe2+ and Fe3+ and soluble and insoluble Ca in stem and leaf tissue. Intolerant plants showed clear symptoms of stress, whereas stress in the Egyptian genotypes and in L pilosus Murr. (a tolerant species) was less marked. Only the intolerant plants became chlorotic and this contributed to their reduced net CO2 uptake in the limed soil. In contrast, Egyptian genotypes and L pilosus showed no change in net CO2 uptake between the soils. The partitioning of Ca and Fe either resulted from the stress responses, or was itself a stress response. L pilosus and some Egyptian genotypes differed in soluble Ca concentrations compared with the intolerant cultivars, although no significant difference was apparent in the Ca partitioning of the Egyptian genotype Giza 1. In a limed soil, Giza 1 maintained its stem Fe3+ concentration at a level comparable with that of plants grown in non-limed soil, whereas stem [Fe3+] of an intolerant genotype increased. Gizal increased the percentage of plant Fe that was Fe2+ in its leaf tissue under these conditions; that of the intolerant genotype was reduced. The potential tolerance of the Egyptian genotypes through these mechanisms and the possibility of nutritional-based screens are discussed.  相似文献   

6.
We found significant genetic variation in the ability of wheat (Triticum aestivum) to form rhizosheaths on acid soil and assessed whether differences in aluminium (Al(3+) ) tolerance of root hairs between genotypes was the physiological basis for this genetic variation. A method was developed to rapidly screen rhizosheath size in a range of wheat genotypes. Backcrossed populations were generated from cv Fronteira (large rhizosheath) using cv EGA-Burke (small rhizosheath) as the recurrent parent. A positive correlation existed between rhizosheath size on acid soil and root hair length. In hydroponic experiments, root hairs of the backcrossed lines with large rhizosheaths were more tolerant of Al(3+) toxicity than the backcrossed lines with small rhizosheaths. We conclude that greater Al(3+) tolerance of root hairs underlies the larger rhizosheath of wheat grown on acid soil. Tolerance of the root hairs to Al(3+) was largely independent of the TaALMT1 gene which suggests that different genes encode the Al(3+) tolerance of root hairs. The maintenance of longer root hairs in acid soils is important for the efficient uptake of water and nutrients.  相似文献   

7.
Kerley  S. J.  Leach  J. E.  Swain  J. L.  Huyghe  C. 《Plant and Soil》2000,222(1-2):241-253
In calcareous soils, genotypes of Lupinus albus L. generally grow poorly, resulting in stunted plants that often develop lime-induced chlorosis. In contrast, some genotypes of L. pilosus Murr. occur naturally in calcareous soils without developing any visible symptoms of stress. Some genotypic variation for tolerance to calcareous soil does exist in L. albus and the tolerance mechanisms need to be determined. The adaptation through root system morphological plasticity of L. albus and L. pilosus, to heterogeneous limed soil profiles (pH 7.8) containing either patches of acid (non-limed) soil, or vertically split between acid and limed soil, was investigated. When grown in the presence of patches of acid soil, L. albus had a 52% greater shoot dry weight and visibly greener leaves compared with plants grown in the homogeneous limed soil. Total root dry matter in the acid-soil patches was greater than in the control limed-soil patches. This was due to a four-fold increase in the cluster root mass, accounting for 95% of the root dry matter in the acid-soil patch. Although these cluster roots secreted no more citric acid per unit mass than those in the limed soil did, their greater mass resulted in a higher citrate concentration in the surrounding soil. L. pilosus responded to the patches of acid soil in a manner comparable with L. albus. When grown in the homogeneous limed soil, L. pilosus had a greater maximum net CO2 assimilation rate (Pmax) than L. albus, however, the Pmax of both species increased after they had accessed a patch of acid soil. Differences were apparent between the L. albus genotypes grown in soil profiles split vertically into limed and acid soil. A genotype by soil interaction occurred in the partitioning between soils of the cluster roots. The genotype La 674 was comparable with L. pilosus and produced over 11% of its cluster roots in the limed soil, whereas the other genotypes produced only 1–3% of their cluster roots in the limed soil. These results indicate L. pilosus is better adapted to the limed soil than L. albus, but that both species respond to a heterogeneous soil by producing mainly cluster roots in an acid-soil patch. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
It has long been assumed that Al3+ is an important rhizotoxic ion in acid soils around the world, but the toxicity of Al3+ relative to mononuclear hydroxy-Al [AlOH2+ and Al(OH)+2] has been examined in detail only for an Al-sensitive wheat variety ( Triticum aestivum L. cv. Tyler). That plant appears to be sensitive to Al3+ but not to AlOH2+ and Al(OH)+2. New experiments, and reanalyses of previously published experiments, provide evidence that dicotyledonous species may be sensitive to mononuclear hydroxy-Al and that Al3+ may be nontoxic, or less toxic, to those plants. Despite these consistently measured differences between wheat and the dicotyledons, the determination of relative toxicities (Al3+ vs mononuclear hydroxy-Al) may be an intractable problem. Because of hydrolysis equilibria, (AlOH2+) and (Al(OH)+2) are equivalent to (Al3+)k1(H+)−1 and (l3+)k2(H+)−2, respectively, in which k1 and k2 are the first and second hydrolysis constants (braces denote activities). Thus, any expression of root elongation as a function of mononuclear hydroxy-Al can be alternatively expressed as a function of (Al3+) and (H+). Toxicity attributed to mononuclear hydroxy-Al may actually be Al3+ toxicity that increases as pH rises (i.e. Al3+ toxicity ameliorated by H+).  相似文献   

9.
Kerley  Simon J. 《Plant and Soil》2000,218(1-2):197-205
The ability of Lupinus albus L. to adapt to a heterogeneous soil profile containing acid subsoil below limed topsoil of the same type, and to utilize nutrients by significantly altering its root system structure, was investigated using specially constructed soil profile tubes. Plants grown in homogeneous acid profiles had the fastest growth while those grown in homogeneous limed-soil profiles showed the slowest growth and exhibited some chlorosis after 19 days. Limed topsoil combined with an acid subsoil profile initially retarded plant growth similar to that in a homogeneous limed soil. However, after 68 days significantly greater growth had occurred in the limed/acid soil treatment relative to the homogeneous limed soil, indicating plants had benefited from the acid subsoil stratum. Plants in the homogeneous limed soil profile had lower concentrations of P, Fe and Mn in shoots compared with those in heterogeneous soils. In contrast, the concentration of Ca increased by 74%, due mainly to an increase in the water-soluble Ca fraction. When grown in a heterogeneous limed/acid soil profile, concentrations of P, Ca, K, Mg, Fe, Mn and Zn in shoots were comparable to those grown in a soil with a homogeneous acid profile. Although total root production was lower in the homogeneous limed-soil profile compared to the acid-soil containing profiles, cluster root mass was maintained at a level comparable with that in acid soil. The roots in heterogeneous soil profiles exhibited extensive plasticity, demonstrating a root-type specific, morphological response to the soil conditions. Within the acid subsoil of a heterogeneous profile, there was a large increase in cluster root mass compared with non-cluster roots. The proliferation of cluster roots in acid soil below limed topsoil may enhance the plant's ability to exploit this soil and facilitate the cultivation of L. albus on limed soil. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treated wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.  相似文献   

11.
Four-week-old sunflower plants ( Helianthus annuus L. cv. Halcón), grown in different nutrient solutions, were used to study the effects of gibberellic acid (GA3) on K+ (Rb+) uptake by roots or transport to the shoot. Gibberellic acid application to the nutrient solution did not affect the exudation process of excised roots. When GA3 was sprayed on leaves 2 to 6 days before excising the roots, the rate of exudation and the K+ flux increased. When the exudation study was done keeping the roots in a nutrient solution in which Rb+ replaced K+, the GA3 effects were evident also on Rb+ uptake and transport. In intact plants, GA3 increased the Rb+ transported to the shoot but did not affect Rb+ accumulation in the root. It is suggested that these GA3 effects can be explained if it is assumed that GA3 acts on the transport of ions to the xylem vessels.  相似文献   

12.
Models for the regulation of K+ uptake in higher plant roots have become more complex as studies have moved from the level of excised low-salt roots to that of intact plants grown under fully autotrophic conditions. In this paper we suggest that some of the differences between the conditions are qualitative, possibly requiring fundamental changes to the model, rather than simply quantitative.
The uptake of K+ by low-salt roots of Zea mays L. [(A619 x Oh 43) x A632], was independent of Na+ concentration over a wide range. However, independence of Na+ was not the case in plants grown on complete nutrient medium in the light: inclusion of Na+ in the uptake medium enhanced K+ uptake. In the presence of Na+, K+ uptake rates were similar in whole plants with high root K+ contents to rates in excised or intact, low-salt roots.  相似文献   

13.
Growth and development of hydroponically grown pea seedlings ( Pisum sativum L. cv. Alaska) were measured using stem and root length as well as number of leaves and lateral roots. The growth was dependent on the presence of cotyledons and was modulated by the irradiance. All plants were grown in a full nutrient solution. If grown at low irradiance (73 μmol m-2s-1) they depended more and for a longer time on the cotyledons than plants grown at high irradiance (220 μmol m-2s-1). Low irradiance caused stem elongation but decreased root length and number of lateral roots as compared to plants grown at high irradiance. The dark respiration of the leaves was measured as oxygen uptake. In plants grown at the low irradiance, excision of the cotyledons caused the rate of oxygen uptake to increase by a factor of three, and the increase was sensitive to cyanide. Decotyledonized plants showed a high respiration rate and a diminished leaf growth for their entire life cycle. CO2 fixation also increased in decotyledonized pea seedlings grown at either irradiance. The mobilization of food reserves from the seeds was positively correlated to seed dry weight, but only if the plants were grown at 73 μmol m-2s-1. Increasing dry weight of the seed enhanced top growth, whereas root growth was depressed, so that top and root responds differently with regard to that part of growth which depends on mobilization of reserves from the seed.  相似文献   

14.
Plants of barley ( Hordeum vulgare L. cv. Salve) were grown with 6.5–35% relative increase of K+ supply per day (RKR) using a special computer-controlled culture unit. After a few days on the culture solution the plants adapted their relative growth rate (RGR) to the rate of nutrient supply. The roots of the plants remained in a low salt status irrespective of the rate of nutrient supply, whereas the concentration of K+ in shoots increased with RKR. Both Vmax and Km for K+(86Rb) influx increased with RKR. It is concluded that with a continuous and stable K+ stress, the K+ uptake system is adjusted to provide an effective K+ uptake at each given RKR. Allosteric regulation of K+ influx does not occur and efflux of K+ is very small.  相似文献   

15.
Plantago lanceolata L. and Trifolium repens L. were grown for 16 wk in ambient (360 μmol mol−1) and elevated (610 μmol mol−1) atmospheric CO2. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe and given a phosphorus supply in the form of bonemeal, which would not be immediately available to the plants. Seven sequential harvests were taken to determine whether the effect of elevated CO2 on mycorrhizal colonization was independent of the effect of CO2 on plant growth. Plant growth analysis showed that both species grew faster in elevated CO2 and that P. lanceolata had increased carbon allocation towards the roots. Elevated CO2 did not affect the percentage of root length colonized (RLC); although total colonized root length was greater, when plant size was taken into account this effect disappeared. This finding was also true for root length colonized by arbuscules. No CO2 effect was found on hyphal density (colonization intensity) in roots. The P content of plants was increased at elevated CO2, although both shoot and root tissue P concentration were unchanged. This was again as a result of bigger plants at elevated CO2. Phosphorus inflow was unaffected by CO2 concentrations. It is concluded that there is no direct permanent effect of elevated CO2 on mycorrhizal functioning, as internal mycorrhizal development and the mycorrhizal P uptake mechanism are unaffected. The importance of sequential harvests in experiments is discussed. The direction for future research is highlighted, especially in relation to C storage in the soil.  相似文献   

16.
Abstract. The objective of this study was to investigate the effects of water stress in sweet potato ( Ipomoea batatas L. [Lam] 'Georgia Jet') on biomass production and plant-water relationships in an enriched CO2 atmosphere. Plants were grown in pots containing sandy loam soil (Typic Paleudult) at two concentrations of elevated CO2 and two water regimes in open-top field chambers. During the first 12 d of water stress, leaf xylem potentials were higher in plants grown in a CO2 concentration of 438 and 666 μmol mol−1 than in plants grown at 364 μmol mol−1. The 364 μmol mol−1 CO2 grown plants had to be rewatered 2 d earlier than the high CO2-grown plants in response to water stress. For plants grown under water stress, the yield of storage roots and root: shoot ratio were greater at high CO2 than at 364 μmol mol−1; the increase, however, was not linear with increasing CO2 concentrations. In well-watered plants, biomass production and storage root yield increased at elevated CO2, and these were greater as compared to water-stressed plants grown at the same CO2 concentration.  相似文献   

17.
Genetic manipulation of crops to tolerate mineral stresses is a practical approach to improve productivity of tropical acid soils. Both acid soil tolerant (AS-T) and susceptible (AS-S) sorghum [Sorghum bicolor (L.) Moench] genotypes were grown in the field on an acid ultisol at Quilichao, Colombia, South America at 60% (60-Al) and 40% (40-Al) Al saturation to evaluate plants for growth and yield traits. Except for days to flowering and root mass scores, AS-T genotypes showed no differences in growth (plant height, head length and width, second internode length and diameter, and acid soil toxicity rating) and yield (total and stover dry matter yields, grain yield, head yield, seeds per head, and 100-seed weight) traits when plants were grown at 60-Al or 40-Al. Plants grown at 60-Al were delayed in flowering and had lower root mass scores. The AS-S genotypes showed improvement for the growth and yield traits when grown at 40-Al compared to 60-Al. The growth and yield traits of the AS-S genotypes were usually less favorable for plants grown at 40-Al than the same traits were for the AS-T genotypes grown at 60-Al. Harvest indices (ratio of grain to total plant yield) were no different for the genotypes grown at 40-Al, and only slightly higher for the AS-T genotypes grown at 60-Al. Sorghum genotypes more tolerant to acid soil conditions showed favorable growth and yield traits when grown under relatively severe acid soil (60-Al, pH 4.1) conditions. Certain sorghum genotypes were able to adapt and effectively produce grain when grown on acid soils with few inputs to reduce acid soil toxicity problems. Published as Paper No. 6690, Journal Series, Mississippi Agricultural and Forestry Experiment Station. Funding received in part from the International Sorghum/Millet Collaborative Research Support Program (INTSORMIL CRSP) through US Agency for International Development (USAID) grant AID/DAN-1254-G-SS-5065-00 and project Nos. MS-111 (MSU) and NE-114 (UNL).  相似文献   

18.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   

19.
Six cultivars of barley ( Hordeum vulgare L., cvs Salve, Nürnberg II, Bomi, Risø 1508, Mona and Sv 73 608) were exposed for three weeks to combinations of high and low mineral supply and differential root/shoot temperature. For all the parameters tested [fresh and dry weights, contents and levels of N, K+, Ca2+ and Mg2+, and influx of Rb+(86Rb)] the cultivar differences were influenced by the mineral supply, the root temperature and the age of the plants.
The cultivar differences in N nutrition of three-week-old plants could partly be attributed to variation in root size, uptake of N and in use-efficiency of the element. The cultivar variation in root-shoot partitioning of N was small, except when low mineral supply was combined with a low root temperature. Similarly, cultivar differences in contents of K+, Ca2+ and Mg2+ were influenced by variation in uptake, use-efficiency and root/shoot partitioning of the elements. Low root temperature increased cultivar variation in K+, Ca2+ and Mg2+ partitioning.
The modern cultivar Salve was compared with Nürnberg II, which is derived from a German land race. Nürnberg II performed better than Salve when low root temperature and restricted mineral supply were combined. Otherwise Salve grew better, partly due to a more efficient use of N.
Two high-lysine lines, Risø 1508 and Sv 73 608, were compared with their mother lines Bomi and Mona. The differences obtained revealed no general effect of the high-lysine genes on growth and mineral nutrition of up to three-week-old barley plants.  相似文献   

20.
Six cultivars of spring barley ( Hordeum vulgare L. cvs Salve, Nümberg II, Bomi, Risø 1508, Mona and Sv 73 608) were grown in water culture for three weeks with various combinations of mineral supply and differential roots/shoot temperatures during the growth period. Most important for growth and accumulation of N, K+, Ca2+ and Mg2+ was the mineral supply, followed by the root temperature and the choice of cultivar. Treatments with low mineral supply or low root temperature induced a uniform reduction in growth and accumulation of the ions studied. The effects of low mineral supply and low root temperature on growth and N accumulation was additive, which indicates that these factors exert their influence independently of each other.
Roots grown at 10°C were smaller and Rb+(86Rb) influx was higher than in roots grown at 20°C. It is suggested that the control of Rb+(86Rb) influx is affected by the root temperature and the age of the plants. The higher 86Rb+ (86Rb) influx into the low temperature roots could not compensate for the smaller root size. However, the lower total mineral accumulation made up for the needs of the smaller plants and cannot explain the reduction in growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号