首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous deterministic finger biomechanical models predicted that the flexor digitorum superficialis (FDS) was silent and the flexor digitorum profundus (FDP) was the only active flexor during finger flexion. Experimental studies in vivo, however, recorded activities of both flexors. In this study, in an attempt to elucidate the roles of the flexors, a probabilistic biodynamic model of the index finger was constructed to estimate the muscle–tendon forces during an experimentally measured index finger flexion movement.A Monte-Carlo simulation was performed with four model parameters, including moment arms, physiological cross sectional areas (PCSA), passive torques, and anthropometric measures as independent random variables. The muscle-tendon forces at each time point were determined using a nonlinear optimization technique. The model predicted that both FDS and FDP contributed to sustaining the movement and the FDS was not necessarily silent. The two distinct force patterns observed in vivo in experimental studies were also corroborated by the simulation. These findings, contrary to previous deterministic models’ predictions but in agreement with experimental measurements, explained the observed coactivation of FDS and FDP, and resolved the controversy regarding the roles of the flexors in finger movement dynamics.  相似文献   

2.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

3.
The present work displayed the first quantitative data of forces acting on tendons and pulleys during specific sport-climbing grip techniques. A three-dimensional static biomechanical model was used to estimate finger muscle tendon and pulley forces during the "slope" and the "crimp" grip. In the slope grip the finger joints are flexed, and in the crimp grip the distal interphalangeal (DIP) joint is hyperextended while the other joints are flexed. The tendons of the flexor digitorum profundus and superficialis (FDP and FDS), the extensor digitorum communis (EDC), the ulnar and radial interosseus (UI and RI), the lumbrical muscle (LU) and two annular pulleys (A2 and A4) were considered in the model. For the crimp grip in equilibrium conditions, a passive moment for the DIP joint was taken into account in the biomechanical model. This moment was quantified by relating the FDP intramuscular electromyogram (EMG) to the DIP joint external moment. Its intensity was estimated at a quarter of the external moment. The involvement of this parameter in the moment equilibrium equation for the DIP joint is thus essential. The FDP-to-FDS tendon-force ratio was 1.75:1 in the crimp grip and 0.88:1 in the slope grip. This result showed that the FDP was the prime finger flexor in the crimp grip, whereas the tendon tensions were equally distributed between the FDP and FDS tendons in the slope grip. The forces acting on the pulleys were 36 times lower for A2 in the slope grip than in the crimp grip, while the forces acting on A4 were 4 times lower. This current work provides both an experimental procedure and a biomechanical model that allows estimation of tendon tensions and pulley forces crucial for the knowledge about finger injuries in sport climbing.  相似文献   

4.
Rock climbers are often using the unique crimp grip position to hold small ledges. Thereby the proximal interphalangeal (PIP) joints are flexed about 90 degrees and the distal interphalangeal joints are hyperextended maximally. During this position of the finger joints bowstringing of the flexor tendon is applying very high load to the flexor tendon pulleys and can cause injuries and overuse syndromes. The objective of this study was to investigate bowstringing and forces during crimp grip position. Two devices were built to measure the force and the distance of bowstringing and one device to measure forces at the fingertip. All measurements of 16 fingers of four subjects were made in vivo. The largest amount of bowstringing was caused by the flexor digitorum profundus tendon in the crimp grip position being less using slope grip position (PIP joint extended). During a warm-up, the distance of bowstringing over the distal edge of the A2 pulley increased by 0.6mm (30%) and was loaded about 3 times the force applied at the fingertip during crimp grip position. Load up to 116N was measured over the A2 pulley. Increase of force in one finger holds by the quadriga effect was shown using crimp and slope grip position.  相似文献   

5.
A numerical optimization procedure was used to determine finger positions that minimize and maximize finger tendon and joint force objective functions during piano play. A biomechanical finger model for sagittal plane motion, based on finger anatomy, was used to investigate finger tendon tensions and joint reaction forces for finger positions used in playing the piano. For commonly used piano key strike positions, flexor and intrinsic muscle tendon tensions ranged from 0.7 to 3.2 times the fingertip key strike force, while resultant inter-joint compressive forces ranged from 2 to 7 times the magnitude of the fingertip force. In general, use of a curved finger position, with a large metacarpophalangeal joint flexion angle and a small proximal interphalangeal joint flexion angle, reduces flexor tendon tension and resultant finger joint force.  相似文献   

6.
In this study we investigated the influence of the loading condition (concentric vs. eccentric loading) on the pulley system of the finger. For this purpose 39 cadaver finger (14 hands, 10 donors) were fixed into an isokinetic loading device. The forces in the flexor tendons and at the fingertip were recorded. In the concentric loading condition A2 and A4 ruptures as well as alternative events such as fracture of a phalanx or avulsion of the flexor tendons were almost equally distributed, whereas the A2 pulley rupture was the most common event (59%) in the eccentric loading condition and alternative events were rare (23.5%). The forces in the deep flexor tendon, the fingertip and in the pulleys were significantly lower in the eccentric loading condition. As the ruptures occurred at lower loads in the eccentric than in the concentric loading condition it can be concluded that friction may be an advantage for climbers, supporting the holding force of their flexor muscles but may also increase the susceptibility to injury.  相似文献   

7.
Since musculoskeletal disorders of the upper extremities are believed to be associated with repetitive excessive muscle force production in the hands, understanding the time-dependent muscle forces during key tapping is essential for exploring the mechanisms of disease initiation and development. In the current study, we have simulated the time-dependent dynamic loading in the muscle/tendons in an index finger during tapping. The index finger model is developed using a commercial software package AnyBody, and it contains seven muscle/tendons that connect the three phalangeal finger sections. Our simulations indicate that the ratios of the maximal forces in flexor digitorum superficialis (FS) and flexor digitorum profundus (FP) tendons to the maximal force at the fingertip are 0.95 and 2.9, respectively, which agree well with recently published experimental data. The time sequence of the finger muscle activation predicted in the current study is consistent with the EMG data in the literature. The proposed model will be useful for bioengineers and ergonomic designers to improve keyboard design minimizing musculoskeletal loadings in the fingers.  相似文献   

8.
In this study the influence of the grip position (crimp grip vs. slope grip position) on the pulley system of the finger was investigated. For this purpose 21 cadaver finger (11 hands, 10 donors) were fixed into an isokinetic loading device. Nine fingers were loaded in the slope grip position and 12 fingers in the crimp grip position. The forces in the flexor tendons and at the fingertip were recorded. A rupture of the A4 pulley occurred most often in the crimp grip position (50%) but did not occur in the slope grip position, in which alternative events were the most common (67%). The forces in the deep flexor tendon (FDP) (slope grip: 371 N, crimp grip: 348 N) and at the fingertip (slope grip: 105 N, crimp grip: 161 N) were not significantly different between the 2 finger positions, but the forces acting on the pulleys were higher in the crimp grip position (A2 pulley: 287 N, A4 pulley: 226 N) than in the slope grip position (A2 pulley: 121 N, A4 pulley: 103 N). The crimp grip position may be the main cause for A4 pulley ruptures but the slope grip position may be hazardous for other injuries as the forces recorded in the flexor tendons and at the fingertip were comparable at the occurrence of a terminal event.  相似文献   

9.
This study examined the effect of computer keyboard keyswitch design on muscle activity patterns during finger tapping. In a repeated-measures laboratory experiment, six participants tapped with their index fingers on five isolated keyswitch designs with varying force–displacement characteristics that provided pairwise comparisons for the design factors of (1) activation force (0.31 N vs. 0.59 N; 0.55 N vs. 0.93 N), (2) key travel (2.5 mm vs. 3.5 mm), and (3) shape of the force–displacement curve as realized through buckling-spring vs. rubber-dome switch designs. A load cell underneath the keyswitch measured vertical fingertip forces, and intramuscular fine wire EMG electrodes measured muscle activity patterns of two intrinsic (first lumbricalis, first dorsal interossei) and three extrinsic (flexor digitorum superficialis, flexor digitorum profundus, and extensor digitorum communis) index finger muscles. The amplitude of muscle activity for the first dorsal interossei increased 25.9% with larger activation forces, but not for the extrinsic muscles. The amplitude of muscle activity for the first lumbricalis and the duration of muscle activities for the first dorsal interossei and both extrinsic flexor muscles decreased up to 40.4% with longer key travel. The amplitude of muscle activity in the first dorsal interossei increased 36.6% and the duration of muscle activity for all muscles, except flexor digitorum profundus, decreased up to 49.1% with the buckling-spring design relative to the rubber-dome design. These findings suggest that simply changing the force–displacement characteristics of a keyswitch changes the dynamic loading of the muscles, especially in the intrinsic muscles, during keyboard work.  相似文献   

10.
11.
The force and excursion within the canine digital flexor tendons were measured during passive joint manipulations that simulate those used during rehabilitation after flexor tendon repair and during active muscle contraction, simulating the active rehabilitation protocol. Tendon force was measured using a small buckle placed upon the tendon while excursion was measured using a suture marker and video analysis method. Passive finger motion imposed with the wrist flexed resulted in dramatically lower tendon force (approximately 5 N) compared to passive motion imposed with the wrist extended (approximately 17 N). Lower excursions were seen at the level of the proximal interphalangeal joint with the wrist flexed (approximately 1.5 mm) while high excursion was observed when the wrist was extended or when synergistic finger and wrist motion were imposed (approximately 3.5 mm). Bivariate discriminant analysis of both force and excursion data revealed a natural clustering of the data into three general mechanical paradigms. With the wrist extended and with either one finger or four fingers manipulated, tendons experienced high loads of approximately 1500 g and high excursions of approximately 3.5 mm. In contrast, the same manipulations performed with the wrist flexed resulted in low tendon forces (4-8 N) and low tendon excursions of approximately 1.5 mm. Synergistic wrist and finger manipulation provided the third paradigm where tendon force was relatively low (approximately 4 N) but excursion was as high as those seen in the groups which were manipulated with the wrist extended. Active muscle contraction produced a modest tendon excursion (approximately 1 mm) and high or low tendon force with the wrist extended or flexed, respectively. These data provide the basis for experimentally testable hypotheses with regard to the factors that most significantly affect functional recovery after digital flexor tendon injury and define the normal mechanical operating characteristics of these tendons.  相似文献   

12.
For the extrinsic hand flexors (flexor digitorum profundus, FDP; flexor digitorum superficialis, FDS; flexor pollicis longus, FPL), moment arm corresponds to the tendon's distance from the center of the metacarpalphalangeal (MP), proximal interphalangeal (PIP), or distal interphalangeal (DIP) joint. The clinical value of establishing accurate moment arms has been highlighted for biomechanical modeling, the development of robotic hands, designing rehabilitation protocols, and repairing flexor tendon pulleys (Brand et al., 1975; An et al., 1983; Thompson and Giurintano, 1989; Deshpande et al., 2010; Wu et al., 2010). In this study, we define the moment arms for all of the extrinsic flexor tendons of the hand across all digital joints for all digits in cadaveric hands.  相似文献   

13.
Specific sites on the palmar diaphysis of the manual middle phalanges provide attachment for the flexor digitorum superficialis (FDS) tendon. It has been assumed in the literature that lateral palmar fossae on these bones reflect locations for these attachments and offer evidence for relative size of the flexor tendon. This assumption has led to predictions about relative FDS muscle force potential from sizes of fossae on fossil hominin middle phalanges. Inferences about locomotor capabilities of fossil hominins in turn have been drawn from the predicted force potential of the flexor muscle. The study reported here provides a critical first step in evaluating hypotheses about behavioral implications of middle phalangeal morphology in fossil hominins, by testing the hypothesis that the lateral fossae reflect the size of the FDS tendon and the location of the terminal FDS tendon attachments on the middle phalanx. The middle phalangeal region was dissected in 43 individuals from 16 primate genera, including humans. Qualitative observations were made of tendon attachment locations relative to the lateral fossae. Length measurements of the fossae were tested as predictors of FDS tendon cross-sectional area and of FDS attachment tendon lengths. Our results lead to the conclusion that the hypothesis must be rejected, and that future attention should focus on functional implications of the palmar median bar associated with the lateral fossae.  相似文献   

14.
The characteristic pathological finding in carpal tunnel syndrome (CTS) is non-inflammatory fibrosis of the subsynovial connective tissue (SSCT), which lies between the flexor tendons and the visceral synovium (VS). How this fibrosis might affect tendon function is unknown. To better understand the normal function of the SSCT, the relative motion of the middle finger flexor digitorum superficialis (FDS III) tendon and VS was observed during finger flexion in patients with CTS and cadavers with a history of CTS and compared to normal cadavers. A digital camcorder was used to monitor the gliding motion of the FDS III tendon and SSCT in eight patients with idiopathic CTS undergoing carpal tunnel release surgery (CTR), in eight cadavers with an antemortem history of CTS and compared these with eight cadaver controls. There were no significant differences noted in the total movement of the SSCT relative to the FDS III. However, the pattern of SSCT movement relative to the FDS III in the CTS patients and cadavers with an antemortem history of CTS differed from the controls in one of two patterns, reflecting either increased SSCT adherence to FDS III or increased SSCT dissociation from FDS III. In CTS, the gliding characteristics of the SSCT are qualitatively altered. These changes may be the result of increased fibrosis within the SSCT, which in some cases has ruptured, resulting in SSCT-tendon dissociation. Similar changes are also identified postmortem in the CTS patient.  相似文献   

15.
The ability to stabilize the gun is crucial for performance in Olympic pistol shooting and is thought to be related to the shooters muscular strength. The present study examines the relation between performance and finger flexor force as well as shoulder abduction isometric force in senior male air pistol shooting. 46 Spanish national level shooters served as test subjects of the study. Two maximal force tests were carried out recording handgrip and deltoid force data under competition conditions, during the official training time at national Spanish championships. Performance was measured as the total score of 60 shots at competition. Linear regressions were calculated to examine the relations between performance and peak and average finger flexor forces, peak and average finger flexor forces relative to the BMI, peak and average shoulder abduction isometric forces, peak shoulder abduction isometric force relative to the BMI. The connection between performance and other variables such as age, weight, height, BMI, experience in years and training hours per week was also analyzed. Significant correlations were found between performance at competition and average and peak finger flexor forces. For the rest of the force variables no significant correlations were found. Significant correlations were also found between performance at competition and experience as well as training hours. No significant correlations were found between performance and age, weight, height or BMI. The study concludes that hand grip strength training programs are necessary for performance in air pistol shooting.  相似文献   

16.
Kinetics of crimp and slope grip in rock climbing   总被引:1,自引:0,他引:1  
The aim was to investigate differences of the kinetics of the crimp and the slope grip used in rock climbing. Nine cadaver fingers were prepared and fixated with the proximal phalanx in a frame. The superficial (FDS) and deep (FDP) flexor tendons were loaded selectively and together with 40 N in the crimp grip (PIP joint flexed 90°/DIP joint hyperextended) and the slope grip position (<25° flexed/50° flexed respectively). Five different grip sizes were tested and the flexion force which was generated to the grip was measured. In the crimp grip the FDP generated more flexion force in small sized holds whereas the FDS generated more force in the larger holds. During the slope grip the FDP was more effective than the FDS. While both tendons were loaded, the flexion force was always greater during crimp grip compared with the slope grip. The FDP seems to be most important for very small holds using the crimp grip but also during slope grip holds whereas the FDS is more important for larger flat holds.  相似文献   

17.
Transected flexor tendons are typically treated by suture repair followed by rehabilitation that generates repetitive tendon loading. Recent results in an in vivo canine model indicate that during the first 10 days after injury and repair, there is an increase in the rigidity of the tendon repair site. Our objective was to determine whether or not ex vivo cyclic loading of repaired flexor tendons causes a similar increase in repair-site rigidity. We simulated 10 days of rehabilitation by applying 6000 loading cycles to repaired canine flexor tendons ex vivo at force levels generated during passive motion rehabilitation; we then evaluated their tensile mechanical properties. High-force (peak force, 17 N) cyclic loading increased repair-site rigidity by 100% and decreased repair-site strain by 50%, whereas low-force (5 N) loading did not change the properties of the repair site. This mechanical conditioning effect may explain, in part, the changes in tensile properties observed after only 10 days of healing in vivo. Mechanical conditioning of repaired flexor tendons by repetitive forces applied during rehabilitation may lead to increases in repair-site rigidity and decreases in strain, thereby altering the mechanical loading environment of tissues and cells at the repair site.  相似文献   

18.
A new friction tester of the flexor tendon.   总被引:1,自引:0,他引:1  
We have developed a new device to measure the friction force and calculate the friction coefficient between a rabbit flexor tendon, a pulley and a proximal phalanx. The flexor digitorum fibularis tendon of a rabbit was taken intact with the proximal phalanx, and tendon pulleys were attached to both ends of the bone. Both ends of the tendon were clamped to acrylic plates and connected to stainless-steel plates equipped with strain gauges. A pretension of 1.96 N was applied so as not to loosen the tendon. The proximal phalanx was fixed to an acrylic plate on the actuator, which gave 8 mm of transfer to the acrylic plate at a speed of 2 mm/s. The interface between the tendon and the surrounded tissue created the friction force, when the load was applied on the distal pulley. The friction force could be obtained from the difference between the tension of both ends of the tendon, which was measured with strain gauges and sampled with a personal computer. The friction force and the friction coefficient were calculated from the measured force and the applied load. The load and the pre-loading time, which was defined as loading duration before gliding, were varied in order to observe the change of the friction coefficient. The friction coefficient was not affected by the load and increased with the pre-loading time. The value of mu(s) ranged from 0.027 to 0.111 (0.072 +/- 0.023), and that of (mu)d ranged from 0.010 to 0.069 (0.039 +/- 0.014) (pre-loading time was 5 s). Our method will allow for the examination of various surgical treatments and lubricants. Moreover, it can be applied to other tissues of any animals with similar structures to the rabbit's digitorum.  相似文献   

19.
Objective estimates of fingertip force reduction following peripheral nerve injuries would assist clinicians in setting realistic expectations for rehabilitating strength of grasp. We quantified the reduction in fingertip force that can be biomechanically attributed to paralysis of the groups of muscles associated with low radial and ulnar palsies. We mounted 11 fresh cadaveric hands (5 right, 6 left) on a frame, placed their forefingers in a functional posture (neutral abduction, 45° of flexion at the metacarpophalangeal and proximal interphalangeal joints, and 10° at the distal interphalangeal joint) and pinned the distal phalanx to a six-axis dynamometer. We pulled on individual tendons with tensions up to 25% of maximal isometric force of their associated muscle and measured fingertip force and torque output. Based on these measurements, we predicted the optimal combination of tendon tensions that maximized palmar force (analogous to tip pinch force, directed perpendicularly from the midpoint of the distal phalanx, in the plane of finger flexion–extension) for three cases: non-paretic (all muscles of forefinger available), low radial palsy (extrinsic extensor muscles unavailable) and low ulnar palsy (intrinsic muscles unavailable). We then applied these combinations of tension to the cadaveric tendons and measured fingertip output. Measured palmar forces were within 2% and 5° of the predicted magnitude and direction, respectively, suggesting tendon tensions superimpose linearly in spite of the complexity of the extensor mechanism. Maximal palmar forces for ulnar and radial palsies were 43 and 85% of non-paretic magnitude, respectively (p<0.05). Thus, the reduction in tip pinch strength seen clinically in low radial palsy may be partly due to loss of the biomechanical contribution of forefinger extrinsic extensor muscles to palmar force. Fingertip forces in low ulnar palsy were 9° further from the desired palmar direction than the non-paretic or low radial palsy cases (p<0.05).  相似文献   

20.
In the human hand, independent movement control of individual fingers is limited. One potential cause for this is mechanical connections between the tendons and muscle bellies corresponding to the different fingers. The aim of this study was to determine the tendon displacement of the flexor digitorum superficialis (FDS) of both the instructed and the neighboring, non-instructed fingers during single finger flexion movements. In nine healthy subjects (age 22–29 years), instructed and non-instructed FDS finger tendon displacement of the index, middle and ring finger was measured using 2D ultrasound analyzed with speckle tracking software in two conditions: active flexion of all finger joints with all fingers free to move and active flexion while the non-instructed fingers were restricted. Our results of the free movement protocol showed an average tendon displacement of 27 mm for index finger flexion, 21 mm for middle finger flexion and 17 mm for ring finger flexion. Displacements of the non-instructed finger tendons (≈12 mm) were higher than expected based of the amount of non-instructed finger movement. In the restricted protocol, we found that, despite minimal joint movements, substantial non-instructed finger tendon displacement (≈9 mm) was still observed, which was interpreted as a result of tendon strain. When this strain component was subtracted from the tendon displacement of the non-instructed fingers during the free movement condition, the relationship between finger movement and tendon displacement of the instructed and non-instructed finger became comparable. Thus, when studying non-instructed finger tendon displacement it is important to take tendon strain into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号