首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TNF-R1 like receptor Fas is highly expressed on the plasma membrane of hepatocytes and plays an essential role in liver homeostasis. We recently showed that in collagen-cultured primary mouse hepatocytes, Fas stimulation triggers apoptosis via the so-called type I extrinsic signaling pathway. Central to this pathway is the direct caspase-8-mediated cleavage and activation of caspase-3 as compared to the type II pathway which first requires caspase-8-mediated Bid cleavage to trigger mitochondrial cytochrome c release for caspase-3 activation. Mathematical modeling can be used to understand complex signaling systems such as crosstalks and feedback or feedforward loops. A previously published model predicted a positive feedback loop between active caspases-3 and -8 in both type I and type II FasL signaling in lymphocytes and Hela cells, respectively. Here we experimentally tested this hypothesis in our hepatocytic type I Fas signaling pathway by using wild-type and XIAP-deficient primary hepatocytes and two recently characterized, selective caspase-3/-7 inhibitors (AB06 and AB13). Caspase-3/-7 activity assays and quantitative western blotting confirmed that fully processed, active p17 caspase-3 feeds back on caspase-8 by cleaving its partially processed p43 form into the fully processed p18 species. Our data do not discriminate if p18 positively or negatively influences FasL-induced apoptosis or is responsible for non-apoptotic aspects of FasL signaling. However, we found that caspase-3 also feeds back on Bid and degrades its own inhibitor XIAP, both events that may enhance caspase-3 activity and apoptosis. Thus, potent, selective caspase-3 inhibitors are useful tools to understand complex signaling circuitries in apoptosis.  相似文献   

2.
3.
Oxidative stress generated by dopamine (DA) oxidation could be one of the factors underlying the selective vulnerability of nigral dopaminergic neurons in Parkinson's diseases. Here we show that DA induces apoptosis in SH-SY5Y neuroblastoma cells demonstrated by activation of caspase-9 and caspase-3, cleavage of poly(ADP-ribose) polymerase as well as nuclear condensation. We also show that p38 mitogen-activated protein kinase is activated within 10 min of DA treatment, which precedes the onset of apoptosis because the potent p38 kinase inhibitor SB203580 protects against DA-induced cell death as well as against caspase-9 and caspase-3 activation. In addition, the antioxidant N-acetyl-L-cysteine (NAC) effectively blocks DA-induced p38 kinase activation, caspase-9 and caspase-3 cleavage and subsequent apoptosis, indicating that DA triggers apoptosis via a signaling pathway that is initiated by the generation of reactive oxygen species (ROS). Dopamine exerts its toxicity principally intracellularly as the DA uptake inhibitor, nomifensine significantly reduces DA-induced cell death as well as activation of p38 kinase and caspase-3. Furthermore, DA induces mitochondrial cytochrome c release, which is dependent on p38 kinase activation and precedes the cleavage of caspases. These observations indicate that DA induces apoptosis primarily by generating ROS, p38 kinase activation, cytochrome c release followed by caspase-9 and caspase-3 activation.  相似文献   

4.
5.
Excessive signaling via the Notch1 receptor inhibits apoptosis in T lymphocytes. Since several antiapoptotic proteins are cleaved by caspases during cell death, we investigated whether Notch1 was a caspase substrate. Results demonstrate that the intracellular domain of Notch1 (NICD) is cleaved into six fragments during apoptosis in Jurkat cells or peripheral T lymphocytes. Notch1 cleavage is prevented by the caspase inhibitors DEVD-fmk and VEID-fmk or by Bcl-2 expression. Caspase-3 and caspase-6 cleave the NICD into six fragments using sites located within the NF-kappaB binding domain, the ankyrin repeats and the transactivation domain. Notch1 cleavage correlates with the loss of HES-1 expression in apoptotic T cells. Notch1 fragments cannot inhibit activation-induced cell death in a T-cell hybridoma, confirming the abrogation of Notch1 antiapoptotic activity by caspases. The ability of the NICD but not the fragments to antagonize Nur77 activity supports a role for this factor in Notch1 antiapoptotic function.  相似文献   

6.
目的:研究沙眼衣原体抑制宿主细胞凋亡活性与MAPK/ERK信号通路的关系。方法:利用化学抑制剂U0126阻断MAPK/ERK信号通路,然后分别采用流式细胞术、Caspase-3活性检测试剂盒和Western Blot实验检测沙眼衣原体感染细胞在凋亡诱导剂Etoposide作用下细胞凋亡率和Caspase-3活性变化,以及PARP是否发生裂解。结果:当MAPK/ERK信号通路被阻断时,在Etoposide的作用下,沙眼衣原体感染细胞凋亡率明显上升,同时Caspase-3被活化和PARP发生裂解。结论:沙眼衣原体抑制宿主细胞凋亡活性与MAPK/ERK信号通路激活有关。  相似文献   

7.
8.
9.
10.
Ligation of the CD95 receptor resulted in a transient increase of cellular tyrosine phosphorylation. The inhibition of protein tyrosine phosphatases by pervanadate, a potent activator of B cells and T cells through the induction of tyrosine phosphorylation and downstream signaling events in the activation cascade, antagonized CD95-triggered apoptosis. Pervanadate exerted its inhibitory effect only during the early phase of apoptosis prior to the CD95-induced decrease of the mitochondrial transmembrane potential. Inhibition of tyrosine phosphatases delayed the cleavage and activation of caspase-8 and caspase-3 and antagonized the tyrosine dephosphorylation of the CD95 receptor-associated phosphoproteins p61 and p89/92. In contrast, ligation of the tumor necrosis factor (TNF) receptor resulted in a continuous tyrosine dephosphorylation of cellular proteins. Pervanadate-induced tyrosine phosphorylation increased the TNF-alpha-induced cytotoxicity and NF-kappaB activation, suggesting that it stimulates early signaling events prior to the separation of the two signaling pathways.  相似文献   

11.
12.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

13.
Immunofluorescence microscopy revealed the rearrangement and gradual dissociation of paxillin from focal adhesion sites during apoptosis. In vitro, cleavage of paxillin by caspase-3 generated a 42-kDa fragment, among other products, while cleavage by calpain generated a different set of fragments. In Rat-1 cells, cleavage of paxillin by caspase-3 was suppressed by zVAD-fmk or zDEVD-cmk, making caspase-3 a likely executioner during etoposide-induced apoptosis. In contrast, the cleavage of paxillin and p130cas in apoptotic L929 cells was blocked by calpain-specific inhibitors, which also reduced the death rate by 23 to 44%. Therefore, The disassembly and degradation of p130cas and paxillin during apoptosis may controlled by both caspases and calpains, depending upon their cellular contexts. Our findings also suggest that focal adhesion proteins paxillin and p130cas take part in integrin-mediated signaling for cell survival, and that their cleavage by caspase and/or calpain may not only disrupt focal adhesion complexes, but may also impede cell survival signaling.  相似文献   

14.
Wang P  Shi T  Ma D 《Life sciences》2006,79(10):934-940
Caspase-9 plays a key role in the intrinsic apoptotic pathway and currently two splice variants (caspase-9-alpha and -beta) have been identified. The present study cloned and characterized a novel caspase-9 splice variant, hereby designated Casp9-gamma. Casp9-gamma is generated from an additional alternative 3' splice site in the fourth exon of caspase-9, resulting in a 58-nucleotide fragment insertion compared with the full-length caspase-9-alpha. The fragment introduces an in-frame stop codon, and the resulting open reading frame (ORF) is preterminated. The Casp9-gamma comprises the deduced 154 amino acid residues containing only the caspase recruitment domain (CARD) and does not contain the large and small subunits. The Casp9-gamma does not promote apoptosis when overexpressed in mammalian cells. Moreover, it inhibits the cleavage of procaspase-3 mediated by proapoptotic member Bax or apoptosis inductor staurosporine. Therefore, Casp9-gamma may function as an endogenous apoptotic inhibitor by interfering with the CARD-CARD interaction between Apaf-1 (apoptotic protease activating factor-1) and procaspase-9. In addition, Casp9-gamma does not enhance NF-kappaB activation in transfected 293T cells, conflicting with previous evidence that the isolated CARD of caspase-9 activates NF-kappaB in ND7 cells. This suggests that the procaspase-9-mediated NF-kappaB activation in response to cellular stresses is cell type-specific through an unidentified mechanism.  相似文献   

15.
On binding to its receptor, transforming growth factor beta (TGFbeta) induces apoptosis in a variety of cells, including human B lymphocytes. We have previously reported that TGFbeta-mediated apoptosis is caspase-dependent and associated with activation of caspase-3. We show here that caspase-8 inhibitors strongly decrease TGFbeta-mediated apoptosis in BL41 Burkitt's lymphoma cells. These inhibitors act upstream of the mitochondria because they inhibited the loss of mitochondrial membrane potential observed in TGFbeta-treated cells. TGFbeta induced caspase-8 activation in these cells as shown by the cleavage of specific substrates, including Bid, and the appearance of cleaved fragments of caspase-8. Our data show that TGFbeta induces an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and caspase-9 and -3 activation. Caspase-8 activation was Fas-associated death domain protein (FADD)-independent because cells expressing a dominant negative mutant of FADD were still sensitive to TGFbeta-induced caspase-8 activation and apoptosis. This FADD-independent pathway of caspase-8 activation is regulated by p38. Indeed, TGFbeta-induced activation of p38 and two different inhibitors specific for this mitogen-activated protein kinase pathway (SB203580 and PD169316) prevented TGFbeta-mediated caspase-8 activation as well as the loss of mitochondrial membrane potential and apoptosis. Overall, our data show that p38 activation by TGFbeta induced an apoptotic pathway via FADD-independent activation of caspase-8.  相似文献   

16.
The ability of insulin to protect neurons from apoptosis was examined in differentiated R28 cells, a neural cell line derived from the neonatal rat retina. Apoptosis was induced by serum deprivation, and the number of pyknotic cells was counted. p53 and Akt were examined by immunoblotting after serum deprivation and insulin treatment, and caspase-3 activation was examined by immunocytochemistry. Serum deprivation for 24 h caused approximately 20% of R28 cells to undergo apoptosis, detected by both pyknosis and activation of caspase-3. 10 nm insulin maximally reduced the amount of apoptosis with a similar potency as 1.3 nm (10 ng/ml) insulin-like growth factor 1, which acted as a positive control. Insulin induced serine phosphorylation of Akt, through the phosphatidylinositol (PI) 3-kinase pathway. Inhibition of PI 3-kinase with wortmannin or LY294002 blocked the ability of insulin to rescue the cells from apoptosis. SN50, a peptide inhibitor of NF-kappaB nuclear translocation, blocked the rescue effect of insulin, but neither insulin or serum deprivation induced phosphorylation of IkappaB. These results suggest that insulin is a survival factor for retinal neurons by activating the PI 3-kinase/Akt pathway and by reducing caspase-3 activation. The rescue effect of insulin does not appear to be mediated by NF-kappaB or p53. These data suggest that insulin provides trophic support for retinal neurons through a PI 3-kinase/Akt-dependent pathway.  相似文献   

17.
p38 mitogen-activated protein kinase is activated and involved in cleavage of caspase-3 during apoptosis induced by a number of stimuli. However, the signaling events triggered by p38 that result in caspase-3 activation are still unknown. In human leukemia cells, two reactive oxygen species, singlet oxygen and hydrogen peroxide (H(2)O(2)), selectively stimulated the phosphorylation of p38. Preincubation of cells with SB203580, a specific inhibitor of p38, dose dependently inhibited DNA fragmentation induced by singlet oxygen but not by H(2)O(2). Protection from apoptosis by SB203580 correlated with inhibition of caspase-3, and several events that are associated with caspase-3 activation, including Bid cleavage, decrease in mitochondrial transmembrane potential and release of cytochrome c from mitochondria, whereas caspase-8 cleavage was not affected by this inhibitor. In contrast, blockade of caspase-8 with Ile-Glu-Thr-Asp-fluoromethyl ketone is sufficient to prevent formation of DNA fragments and to inhibit all the above signaling events, with exception of p38 phosphorylation, in both singlet oxygen- and H(2)O(2)-treated cells. These data suggest that caspase-3 activation is regulated through redundant signaling pathways that involve p38 and caspase-8 acting upstream of Bid during singlet oxygen-induced apoptosis, whereas the activation of caspase-3 by H(2)O(2) is only governed by a caspase-8-mediated apoptotic pathway.  相似文献   

18.
Lee SC  Chan J  Clement MV  Pervaiz S 《Proteomics》2006,6(8):2386-2394
The study investigated the molecular basis of resveratrol (RSV)-evoked apoptosis in four (Bax+/-, Bax-/-, p53+/+, and p53-/-) HCT116 colon cancer cell lines. RSV induced apoptosis in all the cells in a dose-dependent manner; however, Bax+/- and p53+/+ cells were more susceptible than their knockout counterparts (Bax-/- and p53-/-, respectively). Using Bax+/- cells as a model, proteomic analysis revealed four RSV-responsive events: fragmentation of lamin A/C protein; increase in concentration of a more basic isoelectric variant of the ribosomal protein P0; and decrease in concentration of dUTPase as well as stathmin 1. Lamin A cleavage in response to RSV treatment was confirmed using Western blot analysis. Caspase-6 was activated, which was evidenced by cleavage and accumulation in active form of caspase-6 as well as upregulation of the protease activity. RSV-elicited lamin A cleavage and apoptosis were entirely abrogated by the peptide inhibitors of caspase-6. Likewise, partial knockdown of caspase-6 expression using small interfering RNA resulted in significant inhibition of RSV-elicited lamin A cleavage and apoptosis. Furthermore, the lower apoptosis sensitivity of the knockout cells (Bax-/- and p53-/-) correlated with the relatively reduced processing of caspase-6 and lamin A cleavage. Taken together, these data highlight the critical role of caspase-6 and its cleavage of lamin A in apoptotic signaling triggered by RSV in the colon carcinoma cells, which can be activated in the absence of Bax or p53.  相似文献   

19.
The activation of nuclear factor kappaB (NF-kappa B) plays a pivotal role in the regulation of tumor necrosis factor (TNF)-mediated apoptosis. However, little is known about the regulation of TNF-mediated apoptosis by other signaling pathways or growth factors. Here, unexpectedly, we found that bone morphogenetic protein (BMP)-2 and BMP-4 inhibited TNF-mediated apoptosis by inhibition of caspase-8 activation in C2C12 cells, a pluripotent mesenchymal cell line that has the potential to differentiate into osteoblasts depending on BMP stimulation. Utilizing both a trans-dominant IkappaBalpha inhibitor of NF-kappaB expressed in C2C12 cells and IkappaB kinase beta-deficient embryonic mouse fibroblast, we show that BMP-mediated survival was independent of NF-kappaB activation. Rather, the antiapoptotic activity of BMPs functioned through the Smad signaling pathway. Thus, these findings provide the first report of a BMP/Smad signaling pathway that can inhibit TNF-mediated apoptosis, independent of the prosurvival activity of NF-kappaB. Our results suggest that BMPs not only stimulate osteoblast differentiation but can also promote cell survival during the induction of bone formation, offering new insight into the biological functions of BMPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号