首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Phosphatidylinositol 3-kinase (PI3K) is a key molecule mediating signals of insulin in vascular smooth muscle cells (VSMCs). To examine the effect of chronic activation of PI3K on the gene expression of VSMCs, membrane-targeted p110CAAX, a catalytic subunit of PI3K, was overexpressed in rat VSMCs by adenovirus-mediated gene transfer. Similar to insulin's effects, cells overexpressing p110CAAX exhibited a 10- to 15-fold increase in monocyte chemoattractant protein-1 (MCP-1) mRNA expression as compared with the control cells. Electrophoretic mobility shift assay analysis showed that the overexpression of p110CAAX activated neither the NF-kappaB binding nor the activator protein (AP-1) binding activities. We found that two CCAAT/enhancer binding protein (C/EBP) binding sites located between 2.6 and 3.6 kb upstream of the MCP-1 gene were responsible for the induction by p110CAAX. The overexpression of C/EBP-beta and C/EBP-delta but not C/EBP-alpha caused 6- to 8-fold induction of MCP-1 promoter activity. Consistently, the overexpression of p110CAAX as well as insulin induced mRNA expression and nuclear expression of C/EBP-beta and C/EBP-delta in VSMCs. These results clearly indicate that the activation of PI3K induced proinflammatory gene expression through activating C/EBP-beta and C/EBP-delta but not NF-kappaB, which may explain the proinflammatory effect of insulin in the insulin-resistant state.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a procarboxypeptidase B-like zymogen that upon activation by thrombin, thrombin-thrombomodulin, or plasmin attenuates fibrin clot lysis by inhibiting positive feedback in the fibrinolytic cascade. The concentration of TAFI in plasma varies in the human population and thus may constitute a risk factor for thrombotic disorders. In addition, TAFI has been reported to be a positive acute phase reactant in mice. We have initiated molecular analysis of the human TAFI promoter to understand the mechanisms underlying regulation of TAFI gene expression. We identified a putative C/EBP-binding site between -53 and -40 of the promoter. Mutations in this site that abolish C/EBP binding decrease TAFI promoter activity in human hepatoma (HepG2) cells by approximately 80%. Gel mobility shift analyses indicated that C/EBP-beta present in HepG2 nuclear extracts and C/EBP-alpha and -beta present in adult rat liver nuclear extracts bind to the C/EBP site. C/EBP-alpha, -beta, and -delta isoforms are all capable of binding to the C/EBP site and activating the TAFI promoter. The identification of a functional C/EBP-binding site in the human TAFI promoter may have important implications for the regulation of expression of this gene during development and in response to inflammatory stimuli.  相似文献   

11.
12.
Activation of vascular smooth muscle cells (VSMCs) by proinflammatory cytokines is a key feature of atherosclerotic lesion formation. Transforming growth factor (TGF)-beta1 is a pleiotropic growth factor that can modulate the inflammatory response in diverse cell types including VSMCs. However, the mechanisms by which TGF-beta1 is able to mediate these effects remains incompletely understood. We demonstrate here that the ability of TGF-beta1 to inhibit markers of VSMC activation, inducible nitric-oxide synthase (iNOS) and interleukin (IL)-6, is mediated through its downstream effector Smad3. In reporter gene transfection studies, we found that among a panel of Smads, Smad3 could inhibit iNOS induction in an analogous manner as exogenous TGF-beta1. Adenoviral overexpression of Smad3 potently repressed inducible expression of endogenous iNOS and IL-6. Conversely, TGF-beta1 inhibition of cytokine-mediated induction of iNOS and IL-6 expression was completely blocked in Smad3-deficient VSMCs. Previous studies demonstrate that CCAAT/enhancer-binding protein (C/EBP) and NF-kappaB sites are critical for cytokine induction of both the iNOS and IL-6 promoters. We demonstrate that the inhibitory effect of Smad3 occurs via a novel antagonistic effect of Smad3 on C/EBP DNA-protein binding and activity. Smad3 mediates this effect in part by inhibiting C/EBP-beta and C/EBP-delta through distinct mechanisms. Furthermore, we find that Smad3 prevents the cooperative induction of the iNOS promoter by C/EBP and NF-kappaB. These data demonstrate that Smad3 plays an essential role in mediating TGF-beta1 anti-inflammatory response in VSMCs.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号