首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The ts3 temperature-sensitive mutant of Moloney murine leukemia virus has been reported to have a morphogenetic block in a late stage of the budding process. As evidence, previously published electron micrographs of cells maintained at the nonpermissive temperature (39 degrees C) revealed numerous budding virions on the cell surface. However, it appears now that these micrographs reflected budding that occurred not at 39 degrees C, but after cells were removed from the incubator before fixation. The morphogenesis of ts3 is actually blocked at an earlier stage of development.  相似文献   

2.
J Kok  K A Trach    J A Hoch 《Journal of bacteriology》1994,176(23):7155-7160
The obg gene is part of the spo0B sporulation operon and codes for a GTP-binding protein which is essential for growth. A temperature-sensitive mutant in the obg gene was isolated and found to be the result of two closely linked missense mutations in the amino domain of Obg. Temperature shift experiments revealed that the mutant was able to continue cell division for 2 to 3 generations at the nonpermissive temperature. Such experiments carried out during sporulation showed that Obg was necessary for the transition from vegetative growth to stage 0 or stage II of sporulation, but sporulation subsequent to these stages was unaffected at the nonpermissive temperature. Spores of the temperature-sensitive mutant germinated normally at the nonpermissive temperature but failed to outgrow. The primary consequence of the obg mutation may be an alteration in initiation of chromosome replication.  相似文献   

3.
Eleven marker enzymes which accumulate during discrete stages of development in Dictyostelium discoideum were followed in two independent temperature-sensitive mutant strains. Strain TS2 has a temperature-sensitive period during aggregation and remains as a smooth lawn at the nonpermissive temperature (27°C). It develops normally at 22°C. Strain DTS6 has a temperature-sensitive lesion in the post-aggregation stage and fails to form slugs at 27°C. Early enzymes accumulate in these strains at the nonpermissive temperature but late stage-specific enzymes fail to accumulate at 27°C. The pattern of accumulation of specific enzymes in these and other morphological mutants defines a linear dependent pathway of at least eight steps which determines temporal differentiation in this organism. Development in Dictyostelium is also dependent on environmental cues which determine the onset of differentiation and the preparation for culmination.  相似文献   

4.
Morphological studies of a conditionally temperature-sensitive ribonucleic acid polymerase mutant of Bacillus subtilis have revealed that sporulation is inhibited at stage II when the cells are grown at 47.5 C. Growth and sporulation occur normally at 30 C with the mutant. The mutant grows normally at 47.5 C but is prevented from sporulating at the nonpermissive temperature by an abnormal septation during forespore membrane formation which prevents the subsequent engulfment process (stage III). The mutation affects the normal functioning of ribonucleic acid polymerase at the nonpermissive temperature resulting in abortive sporulation.  相似文献   

5.
A single site mutant of Bacillus subtilis with a streptovaricin-resistant RNA polymerase has been isolated; this mutation caused temperature-sensitive sporulation, but had no effect on vegetative growth. The mutant (ts710) temperature-sensitive period irreversibly affected the middle and late stages of sporulation. Mutant cells grown at the nonpermissive temperature exhibited abnormal serine protease accumulation, serine esterase accumulation, alkaline phosphatase accumulation, RNA polymerase template specificity changes, and pulse-labeled RNA synthesis profiles. The accumulation of metal protease was not affected at the nonpermissive temperature. Attempts to isolate single site mutants which were streptolydigin-resistant, and temperature-sensitive for sporulation, were unsuccessful.  相似文献   

6.
A temperature-sensitive cell cycle mutant of the BHK cell line   总被引:19,自引:0,他引:19  
A temperature-sensitive growth mutant derived from the BHK 21 cell Line, ts AF8, was found to have greatly reduced DNA synthesis at the nonpermissive temperature. This reduction is mainly due to a decrease in the frequency of cells synthesizing DNA. Upon shift up, ts AF8 becomes blocked in the G1 phase of the cell cycle. The cells acquire elevated cAMP levels and a unimodal distribution of DNA content, equivalent to that of G1 cells at the permissive temperature, Ts AF8 cells blocked at the G1/S boundary with hydroxyurea will enter S when shifted to the nonpermissive temperature. On the other hand, ts AF8 cells arrested m G1 by serum deprivation and shifted to the nonpermissive temperature at the moment of serum addition do not enter S, while those synchronized by isoleucine deprivation and shifted at the time of isoleucine addition will enter S. These data suggest that the cycle arrest point of the ts AF8 mutation is located in G1 between the blocks induced by serum starvation and isoleucine deprivation. The reduction in DNA synthesis caused by the ts AF8 mutation is not reversed by infection or transformation with Polyoma virus. Mitochondrial DNA continues to be synthesized at wild-type levels at the nonpermissive temperature.  相似文献   

7.
Two temperature-sensitive (ts) mutants of mammalian cell lines (AF8 and cs4D3) that arrest in G1 at the nonpermissive temperature were fused with chick erythrocytes and the induction of DNA synthesis was studied in the resulting heterokaryons. While both AF8 and cs4D3 could induce DNA synthesis in chick nuclei at the permissive temperature, they both failed to do so when arrested in G1 at the nonpermissive temperature. When S phase AF8 cells were fused with chick erythrocytes, chick nuclei were reactivated even if the heterokaryons were incubated at the temperature nonpermissive for AF8. A third ts mutant, ts111, that is blocked in cytokinesis but continues to synthesize DNA, reactivated chick nuclei at both permissive and nonpermissive temperature. It is concluded that chick erythrocyte reactivation depends on the presence of S phase-specific factors.  相似文献   

8.
Under conditions of nutrient deprivation, Myxococcus xanthus undergoes a developmental process that results in the formation of a fruiting body containing environmentally resistant myxospores. We have shown that myxospores contain two copies of the genome, suggesting that cells must replicate the genome prior to or during development. To further investigate the role of DNA replication in development, a temperature-sensitive dnaB mutant, DnaBA116V, was isolated from M. xanthus. Unlike what happens in Escherichia coli dnaB mutants, where DNA replication immediately halts upon a shift to a nonpermissive temperature, growth and DNA replication of the M. xanthus mutant ceased after one cell doubling at a nonpermissive temperature, 37°C. We demonstrated that at the nonpermissive temperature the DnaBA116V mutant arrested as a population of 1n cells, implying that these cells could complete one round of the cell cycle but did not initiate new rounds of DNA replication. In developmental assays, the DnaBA116V mutant was unable to develop into fruiting bodies and produced fewer myxospores than the wild type at the nonpermissive temperature. However, the mutant was able to undergo development when it was shifted to a permissive temperature, suggesting that cells had the capacity to undergo DNA replication during development and to allow the formation of myxospores.  相似文献   

9.
At the nonpermissive temperature, somatic embryos of the temperature-sensitive (ts) carrot (Daucus carota L.) cell variant ts11 only proceed beyond the globular embryo stage in the presence of medium conditioned by wild-type cells. The causative component in the conditioned medium has been identified as an acidic 32 kD endochitinase. An antiserum raised against the 32 kD chitinase detected this protein in culture medium from ts11 embryo cultures grown at the permissive temperature as well as at the nonpermissive temperature. No difference in biochemical characteristics or in effect on ts11 embryo development could be detected between the 32 kD chitinase purified from wild-type cultures and the chitinase from ts11 cultures grown at the permissive or at the nonpermissive temperature. Compared to the amount present in a ts11 embryo culture at the permissive temperature, a reduction in the amount of 32 kD chitinase was observed during the temperature-sensitive period at the nonpermissive temperature. These results imply that the arrested embryo phenotype of ts11 is not the result of a structural difference in its 32 kD chitinase, but is the result of a transient decrease in the amount of 32 kD chitinase present. Morphological observations indicate that the ts11 phenotype is pleiotropic and also affects the cell wall of nonembryogenic cells. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
A carrot somatic embryo mutant is rescued by chitinase.   总被引:30,自引:4,他引:26       下载免费PDF全文
At the nonpermissive temperature, somatic embryogenesis of the temperature-sensitive (ts) carrot cell mutant ts11 does not proceed beyond the globular stage. This developmental arrest can be lifted by the addition of proteins secreted by wild-type cells to the culture medium. From this mixture of secreted proteins, a 32-kD glycoprotein, designated extracellular protein 3 (EP3), that allows completion of somatic embryo development in ts11 at the nonpermissive temperature was purified. On the basis of peptide sequences and biochemical characterization, EP3 was identified as a glycosylated acidic endochitinase. The addition of the 32-kD endochitinase to ts11 embryo cultures at the nonpermissive temperature appeared to promote the formation of a correctly formed embryo protoderm. These results imply that a glycosylated acidic endochitinase has an important function in early plant somatic embryo development.  相似文献   

12.
Bacillus subtilis mutants with temperature-sensitive growth on complex media were screened for defects in phospholipid metabolism. One mutant was isolated that showed temperature-sensitive net synthesis of phosphatidylethanolamine. The mutant did not accumulate phosphatidylserine at the nonpermissive temperature. In the presence of hydroxylamine, wild-type B. subtilis accumulated phosphatidylserine at both 32 and 45 degrees C, whereas the mutant did only at 32 degrees C. In vitro phosphatidylethanolamine synthesis with bacterial membranes is no more temperature sensitive with mutant membranes than with wild-type membranes. The mutation probably affects the synthesis indirectly, possibly by altering a membrane protein. The mutant bacteria grew at the nonpermissive temperature, 45 degrees C, in a phosphate buffer-based minimal medium, although net synthesis of phosphatidylethanolamine was also temperature sensitive in this medium. One mutation caused both temperature-sensitive growth on complex media and temperature-sensitive net synthesis of phosphatidylethanolamine. The mutation is linked to aroD by transformation.  相似文献   

13.
Yeast calmodulin (CaM) is required for the progression of nuclear division (Ohya, Y. and Y. Anraku. 1989. Curr. Genet. 15:113-120), although the precise mechanism and physiological role of CaM in this process are unclear. In this paper we have characterized the phenotype caused by a temperature-sensitive lethal mutation (cmdl-101) in the yeast CaM. The cmdl-101 mutation expresses a carboxyl-terminal half of the yeast CaM (Met72-Cys147) under the control of an inducible GAL1 promoter. Incubation of the cmdl-101 cells at a nonpermissive temperature causes a severe defect in chromosome segregation. The rate of chromosome loss in the cmdl-101 mutant is higher than wild-type cell even at permissive temperature. The primary visible defect observed by immunofluorescence and electron microscopic analyses is that the organization of spindle microtubules is abnormal in the cmdl-101 cells grown at nonpermissive temperature. Majority of budded cells arrested at the high temperature contain only one spindle pole body (SPB), which forms monopolar spindle, whereas the budded cells of the same strain incubated at permissive temperature all contain two SPBs. Using the freeze-substituted fixation method, we found that the integrity of the nuclear morphology of the cmdl-101 mutant cell is significantly disturbed. The nucleus in wild-type cells is round with smooth contours of nuclear envelope. However, the nuclear envelope in the mutant cells appears to be very flexible and forms irregular projections and invaginations that are never seen in wild-type cells. The deformation of the nuclear becomes much more severe as the incubation at nonpermissive temperature continues. The single SPB frequently localizes on the projections or the invaginations of the nuclear envelope. These observations suggest that CaM is required for the functions of SPB and spindle, and the integrity of nucleus.  相似文献   

14.
A temperature-sensitive mutant strain was isolated from an RNase III-(rnc) strain of Escherichia coli. At the permissive temperature it behaves like the parental strain, but at the nonpermissive temperature it fails to produce normal levels of 23 S and 5 S rRNA, while instead the 25 S rRNA species becomes very prominent. (The 25 S molecule appears in rnc cells and contains 23 S rRNA sequences). When an rnc+ mutation was introduced to such a strain, or when the rnc mutation was replaced by an rnc+ allele, the strain remained temperature-sensitive. At the permissive temperature such strains synthesized rRNA like any other E. coli strain, but at the nonpermissive temperature they remained unable to synthesize normal levels of 5 S rRNA, and instead a larger molecule was accumulated. The simplest interpretation of theses findings is that the mutant strain contains a temperature-sensitive processing endoribonuclease, RNase E, which normally introduces a cut in the growing rRNA chain somewhere between the 23 S and the 5 S rRNA cistrons. These findings help also to explain the nature and origin of the various rRNA species observed in RNase III- cells and add to our understanding of processing of ribosomal RNA in normal cells of Escherichia coli.  相似文献   

15.
Whole chick embryo fibroblasts were infected with the Prague wild type Rous sarcoma virus and with a temperature sensitive mutant of this strain, RSVtsLA24. Normal fibroblasts and fibroblasts infected with the temperature-sensitive mutant and cultured at the nonpermissive temperature-sensitive mutant and cultured at the nonpermissive temperature, secreted procollagen into the medium and incorporated collagen into their extracellular matrix. On the other hand, transformed fibroblasts and fibroblasts infected with the temperature-sensitive mutant and cultured at the permissive temperature, were able to secrete procollagen into the medium, but there was no evidence that they were able to convert procollagen to collagen and incorporate collagen into an extracellular matrix. The inability of the infected cells to incorporate collagen into an extracellular matrix was found to be a result of transformation rather than of virus production in these cells.  相似文献   

16.
A temperature-sensitive mutant has been shown to be blocked at a specific point in the nuclear division cycle: just before the initiation of DNA synthesis at the time when the spindle pole bodies have duplicated but not separated. The metabolic activities of conidia of this mutant strain at the nonpermissive temperature have led us to conclude that the nuclei in a population of dormant conidia are arrested at various points in the nuclear division cycle. This conclusion is substantiated by the activities of conidia in the presence of the inhibitory drugs cycloheximide and hydroxyurea. In each inhibitory situation we observed that some, but not all, of the conidia were able to accomplish DNA synthesis and/or nuclear division.  相似文献   

17.
We have characterized a temperature-sensitive mutant of vaccinia virus, ts16, originally isolated by Condit et al. (Virology 128:429-443, 1983), at the permissive and nonpermissive temperatures. In a previous study by Kane and Shuman (J. Virol 67:2689-2698, 1993), the mutation of ts16 was mapped to the I7 gene, encoding a 47-kDa protein that shows partial homology to the type II topoisomerase of Saccharomyces cerevisiae. The present study extends previous electron microscopy analysis, showing that in BSC40 cells infected with ts16 at the restrictive temperature (40 degrees C), the assembly was arrested at a stage between the spherical immature virus and the intracellular mature virus (IMV). In thawed cryosections, a number of the major proteins normally found in the IMV were subsequently localized to these mutant particles. By using sucrose density gradients, the ts16 particles were purified from cells infected at the permissive and nonpermissive temperatures. These were analyzed by immunogold labelling and negative-staining electron microscopy, and their protein composition was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. While the ts16 virus particles made at the permissive temperature appeared to have a protein pattern identical to that of wild-type IMV, in the mutant particles the three core proteins, p4a, p4b, and 28K, were not proteolytically processed. Consistent with previous data the sucrose-purified particles could be labelled with [3H]thymidine. In addition, anti-DNA labelling on thawed cryosections suggested that most of the mutant particles had taken up DNA. On thawed cryosections of cells infected at the permissive temperature, antibodies to I7 labelled the virus factories, the immature viruses, and the IMVs, while under restrictive conditions these structures were labelled much less, if at all. Surprisingly, however, by Western blotting (immunoblotting) the I7 protein was present in similar amounts in the defective particles and in the IMVs isolated at the permissive temperature. Finally, our data suggest that at the nonpermissive temperature the assembly of ts16 is irreversibly arrested in a stage at which the DNA is in the process of entering but before the particle has completely sealed, as monitored by protease experiments.  相似文献   

18.
Stage 21 to 22 chicken embryo limb bud cells were infected with a temperature-sensitive mutant of Rous sarcoma virus and were grown in culture. Although control, uninfected cells yielded definitive chondroblasts (by day 4) which initiated the synthesis of the cartilage-characteristic proteoglycan, the transformed cells grown at the permissive temperature failed to do so. These effects were fully reversible after a shift to the nonpermissive temperature. In addition, infected cells at the nonpermissive temperature expressed traits of terminal chondrogenic maturation 2 to 3 days earlier than parallel, uninfected cells. Thus, Rous sarcoma virus-induced transformation reversibly blocks terminal limb bud cell chondrogenesis in culture, at the nonpermissive temperature, viral infection may also induce intracellular or extracellular conditions which favor or accelerate the process of chondrogenic cell maturation.  相似文献   

19.
The effect of restrictive temperature on ubiquitin conjugation activity has been studied in cells of ts20, a temperature-sensitive cell cycle mutant of the Chinese hamster cell line E36. Ts20 is arrested in early G2 phase at nonpermissive temperature. Immunoblotting with antibodies to ubiquitin conjugates shows that conjugates disappear rapidly at restrictive temperatures in ts20 mutant but not in wild type E36 cells. The incorporation of 125I-ubiquitin into permeabilized ts20 cells is temperature-sensitive. Addition of extracts of another G2 phase mutant, FM3A ts85, with a temperature-sensitive ubiquitin activation enzyme (E1), to permeabilized ts20 cells at restrictive temperatures fails to complement their ubiquitin ligation activity. This indicates that the lesions in the two mutants are similar. Purified E1 from reticulocytes restores the conjugation activity of heat-inactivated permeabilized ts20 cells. Ubiquitin conjugation activity of cell-free extracts of ts20 cells was temperature-sensitive and could be restored by adding purified reticulocyte E1. Purified reticulocyte E2 or E3, on the other hand, did not restore the ubiquitin conjugation activity of heat-treated ts20 extracts. These results are consistent with the conclusion that ts20 has temperature-sensitive ubiquitin-activating enzyme (E1). The fact that two E1 mutants (ts20 and ts85) derived from different cell lines are arrested at the S/G2 boundary at restrictive temperatures strongly indicates that ubiquitin ligation is necessary for passage through this part of the cell cycle. The temperature thresholds of heat shock protein synthesis of ts20 and wild type E36 cells were identical. The implications of these findings with respect to a suggested role of ubiquitin in coupling between protein denaturation and the heat shock response are discussed.  相似文献   

20.
The myeloproliferative sarcoma virus is molecularly related to the Moloney sarcoma virus (Pragnell et al., J. Virol. 38:952-957, 1981), but causes both fibroblast transformation in vitro and leukemic changes--including spleen focus formation--in adult mice. The fibroblast transforming properties of myeloproliferative sarcoma virus were used to select viral temperature-sensitive mutants at 39.5 degrees C, the nonpermissive temperature. These mutants are temperature sensitive in the maintenance of the transformed state. This was also shown by cytoskeletal changes of the infected cells at permissive and nonpermissive temperatures. Viruses released from cells maintained at both the permissive and nonpermissive temperature are temperature sensitive in fibroblast transformation functions. All temperature-sensitive mutants show only a low reversion rate to wild-type transforming function. The myeloproliferative sarcoma virus temperature-sensitive mutants are inefficient in causing leukemic transformation (spleen enlargement, focus formation) in mice at the normal temperature. A method to maintain a low body temperature (33 to 34 degrees C) in mice is described. One temperature-sensitive mutant was checked at low body temperature and did not induce leukemia. These data thus indicate that the same or related viral functions are responsible for hematopoietic and fibroblast transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号