首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The (Na+,K+)-ATPase activity from the kidney cortex of the Milan hypertensive rat strain (MHS) and the corresponding normotensive control (MNS) was measured both in active solubilized enzyme preparations and in isolated basolateral membrane vesicles. Kinetic analysis of the purified enzyme showed that the Vmax value was significantly higher in MHS rats. The difference between MHS and MNS was not linked to a different number of sodium pumps, but was related to the molecular activity of the enzyme. Using basolateral membrane vesicles, an increased ATP-dependent ouabain-sensitive sodium transport was also demonstrated in MHS rats. These results support the hypothesis that a higher tubular sodium reabsorption may be involved in the pathogenesis of hypertension in this rat strain.  相似文献   

2.
Summary The rate of ATP hydrolysis in ATP-preloaded plasma membrane vesicles derived from the luminal membrane of renal cortical tubules, and the rate of H+ secretion out of the same vesicles were investigated. Both were inhibited at low temperature, by the action of filipin, an antibiotic that complexes with cholesterol in plasma membranes, and by the action of blockers of mitochondrial Fo hydrogen channels, dicyclohexylcarbodiimide and Dio-9. Valinomycin in the presence of K+ showed a stimulatory effect, the protonophor carbonyl-cyanid-p-trifluormethoxy-phenylhydrazone stimulated the intravesicular ATP hydrolysis and apparently abolished acidification of the extravesccular medium. Lowering of the pH of the extravesicular medium retarded ATP hydrolysis, while readjustment of extra- and intravesicular pH accelerated ATP hydrolysis again. These findings strongly support the assumption that an ATP-driven proton pump is located in the luminal membrane of renal cortical tubules.  相似文献   

3.
The resorbing osteoclast is an exceptional cell that secretes large amounts of acid through the coupled activity of a v-type H+-ATPase and a chloride channel that both reside in the ruffled membrane. Impairment of this acid secretion machinery by genetic mutations can abolish bone resorption activity, resulting in osteopetrotic phenotypes. Another key feature of osteoclasts is the transport of high amounts of calcium and phosphate from the resorption lacuna to the basolateral plasma membrane. Evidence exists that this occurs in part through entry of these ions into the osteoclast cytosol. Handling of such large amounts of a cellular messenger requires elaborate mechanisms. Membrane proteins that regulate osteoclast calcium homeostasis and the effect of calcium on osteoclast function and survival are therefore the second main focus of this review.  相似文献   

4.
The malaria parasite is a unicellular protozoan parasite of the genus Plasmodium that causes one of the most serious infectious diseases for human beings. Like other protozoa, the malaria parasite possesses acidic organelles, which may play an essential role(s) in energy acquisition, resistance to antimalarial agents, and vesicular trafficking. Recent evidence has indicated that two types of vacuolar proton pumps, vacuolar H+-ATPase and vacuolar H+-pyrophosphatase, are responsible for their acidification. In this mini-review, we discuss the recent progress on vacuolar proton pumps in the malaria parasite.  相似文献   

5.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

6.
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 μM and 10 μM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 μM concentrations. Comparing control and REN concentration of 1 μM, JHCO3, nmol cm− 2 s− 1 − 1,76 ± 0,11control × 1,29 ± 0,08REN 10 μM; P < 0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 μM (JHCO3, nmol cm− 2 s− 1 − 0.80 ± 0.07control × 0.60 ± 0.06REN 1 μM; P < 0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na+/H+exchanger and H+-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.  相似文献   

7.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK m of 93 m. Support of H+ uptake andP i liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K i , 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP i liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK i , 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK i , 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas.  相似文献   

8.
Summary The basolateral membrane of the thick ascending loop of Henle (TALH) of the mammalian kidney is highly enriched in Na+/K+ ATPase and has been shown by electrophysiological methods to be highly conductive to Cl. In order to study the Cl conductive pathways, membrane vesicles were isolated from the TALH-containing region of the porcine kidney, the red outer medulla, and Cl channel activity was determined by a36Cl uptake assay where the uptake of the radioactive tracer is driven by the membrane potential (positive inside) generated by an outward Cl gradient. The accumulation of36Cl inside the vesicles was found to be dependent on the intravesicular Cl concentration and was abolished by clamping the membrane potential with valinomycin. The latter finding indicated the involvement of conductive pathways. Cl channel activity was also observed using a fluorescent potential-sensitive carbocyanine dye, which detected a diffusion potential induced by an imposed inward Cl gradient. The anion selectivity of the channels was Cl>NO 3 =I gluconate. Among the Cl transport inhibitors tested, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPAB), 4,4-diisothiocyano-stilbene-2,2-disulfonate (DIDS), and diphenylamine-2-carboxylate (DPC) showed IC50 of 110, 200 and 550 m, respectively. Inhibition of36Cl uptake by NPPAB and two other structural analogues was fully reversible, whereas that by DIDS was not. The nonreactive analogue of DIDS, 4,4-dinitrostilbene-2,2-disulfonate (DNDS), was considerably less inhibitory than DIDS (25% inhibition at 200 m). The irreversible inhibition by DIDS was prevented by NPPAB, whereas DPC was ineffective, consistent with its low inhibitory potency. It is proposed that NPPAB and DIDS bind to the same or functionally related site on the Cl channel protein.  相似文献   

9.
The Na+, K+-ATPase activity and its response to vanadate inhibition was investigated in cerebral cortex homogenates of 7-, 12- and 18-day-old rats. The enzyme was inhibited by vanadate in a dose-dependent manner in all these age groups. Furthermore, there was a different sensitivity towards vanadate during postnatal development; the concentration of V+5 needed for 50% inhibiton of Na+, K+-ATPase was 1.1×10–6M, 2×10–7M and 4.4×10–7M for 7-, 12- and 18-day-old rats, respectively. It is suggested that the different sensitivity of Na+, K+-ATPase towards vanadate inhibition during postnatal development might be due to age-dependent changes in the ratio of various cell types.Special Issue dedicated to Dr. O. H. Lowry.  相似文献   

10.
Summary A membrane fraction, rich in brush border membranes, was prepared from renal proximal tubules of the spiny dogfish,Squalus acanthias, and the sodium-proton exchange mechanism in these membrane vesicles was investigated by both a rapid filtration technique and the fluorescence quenching of acridine organe.22Na+ uptake was stimulated by an outwardly directed H+ gradient, and was inhibited by amiloride at a single inhibitory site with an apparentK i of approximately 1.7×10–5 M. In the presence of an H i + >H o + gradient, the of the Na+/H+ exchanger were 9.7±0.8 mM and 48.0±12.0 nmol·mg protein–1·min–1, respectively. The uptake of Na+ was electroneutral in the presence of a H+ gradient, indicating a stoichiometry of 1. In the fluorescence studies, quenching of acridine orange occurred in the presence of an outwardly directed Na+ gradient which was inhibited by amiloride. Thus, an electroneutral Na+/H+ exchanger with properties similar to those found in the mammalian kidney is also present in the spiny dogfish and may contribute to the urinary acidification of this marine animal.  相似文献   

11.
A membrane fraction enriched in plasma membrane (PM) vesicles was isolated from the root cells of a salt-accumulating halophyte Suaeda altissima (L.) Pall. by means of centrifugation in discontinuous sucrose density gradient. The PM vesicles were capable of generating ΔpH at their membrane and the transmembrane electric potential difference (Δψ). These quantities were measured with optical probes, acridine orange and oxonol VI, sensitive to ΔpH and Δψ, respectively. The ATP-dependent generation of ΔpH was sensitive to vanadate, an inhibitor of P-type ATPases. The results contain evidence for the functioning of H+-ATPase in the PM of the root cells of S. altissima. The addition of Na+ and Li+ ions to the outer medium resulted in dissipation of ΔpH preformed by the H+-ATPase, which indicates the presence in PM of the functionally active Na+/H+ antiporter. The results are discussed with regard to involvement of the Na+/H+ antiporter and the PM H+-ATPase in loading Na+ ions into the xylem of S. altissima roots.  相似文献   

12.
Achim Hager  Christa Lanz 《Planta》1989,180(1):116-122
Functional properties and the localization of essential SH-groups of the tonoplast H+-ATPase fromZea mays L. were studied. In contrast to the pyrophosphate-dependent H+-translocation activity of the tonoplast, the H+-ATPase activity was inhibited by SH-blocking agents, such as N-ethylmaleimide and iodoacetic acid. In the case ofp-hydroxymercuribenzoate, HgCl2 and oxidized glutathione, the inhibition could be reversed by adding reduced glutathione or dithiothreitol. Incubation of tonoplast vesicles with oxidized glutathione or N-ethylmaleimide in the presence of Mg·ADP—a competitive inhibitor of the ATP-dependent H+ pump—avoided the inhibition of the H+-pumping activity. This effect is an indication for the occurrence of essential SH-groups at the catalytic site of the H+-ATPase. In order to characterize the active center these thiols were specifically labeled with maleimidobutyrylbiocytin. Subsequently, the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to an immobilizing membrane. The maleimidobutyrylbiocytin-labeled active-center protein was detected by a biotin-streptavidin-peroxidase staining system and was shown to be a 70-kDa subunit of the tonoplast H+-ATPase. It is suggested that the oxidation state of the critical sulfhydryl groups within the active center of the enzyme and their reversible blocking by endogenous compounds might be of great importance for the regulation of the enzyme activity in vivo.  相似文献   

13.
Summary Chloride channels from rat colonic enterocytes were studied using the patch-clamp technique. After removal of mucus, inside-out patches were excised from the apical membrane of intact epithelium located at the luminal surface. They contained spontaneously switching Cl channels with a conductance of 35–40 pS. The channels were blocked reversibly by anthracene-9-carboxylic acid (1mm).In excised patches from single enterocytes, isolated by calcium removal, the Cl channels were studied in more detail. TheI–V relation was linear between ±80 mV. The selectivity was I>Br>Cl=NO 3 >F=HCO 3 .Thirty pS Cl channels were also found on the basolateral membrane of crypts isolated by brief calcium removal. TheI–V curve of these Cl channels was also linear.The results provide direct evidence for the existence of Cl channels in the apical membrane of surface cells in colonic mucosa. The properties of these channels are similar to those previously observed when incorporating membrane vesicles into planar lipid bilayers. Both results support the validity of the theoretical models describing intestinal secretion.  相似文献   

14.
To test the involvement of the water channel aquaporin (AQP)-4 in gastric acid physiology, the human gastric cell line (HGT)-1 was stably transfected with rat AQP4. AQP4 was immunolocalized to the basolateral membrane of transfected HGT-1 cells, like in native parietal cells. Expression of AQP4 in transfected cells increased the osmotic water permeability coefficient (Pf) from 2.02 +/- 0.3 x 10-4 to 16.37 +/- 0.5 x 10-4 cm/s at 20 degrees C. Freeze-fracture EM showed distinct orthogonal arrays of particles (OAPs), the morphological signature of AQP4, on the plasma membrane of AQP4-expressing cells. Quantitative morphometry showed that the density of OAPs was 2.5 +/- 0.3% under basal condition and decreased by 50% to 1.2 +/- 0.3% after 20 min of histamine stimulation, mainly due to a significant decrease of the OAPs number. Concomitantly, Pf decreased by approximately 35% in 20-min histamine-stimulated cells. Both Pf and OAPs density were not modified after 10 min of histamine exposure, time at which the maximal hormonal response is observed. Cell surface biotinylation experiments confirmed that AQP4 is internalized after 20 min of histamine exposure, which may account for the downregulation of water transport. This is the first evidence for short term rearrangement of OAPs in an established AQP4-expressing cell line.  相似文献   

15.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7 M.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA3 gibberellic acid - H+-ATPase adenosine triphosphatase - H+-PPase pyrophosphatase - ATP adenosine triphosphate - Tris Tris (hydroxymethyl)-aminomethane - MES (2[N-Morpholino]) ethane sulfonic acid - EDTA ethylene diamine tetraacetic acid - Pi inorganic phosphate  相似文献   

16.
Neuronal ATPases comprise a wide variety of enzymes which are not uniformly distributed in different membrane preparations. Since purified vesicle fractions have Mg2+/Ca2+-ATPase, the purpose of the present study was to know whether such enzyme activities have a preferential concentration in a synaptic vesicle fraction in order to be used as markers for these organelles. Resorting to a procedure developed in this Institute, we fractionated the rat cerebral cortex by differential centrifugation following osmotic shock of a crude mitochondrial fraction and separated a purified synaptic vesicle fraction over discontinuous sucrose gradients. Mg2+/Ca2+-ATPase activities and ultrastructural studies of isolated fractions were carried out. It was observed that similar specific activities for Mg2+/Ca2+-ATPases were found in all fractions studied which contain synaptic vesicles and/or membranes. Although the present results confirm the presence of Mg2+ and Ca2+-ATPase activities in synaptic vesicles preparations, they do not favor the contention that Mg2+/Ca2+-ATPase is a good marker for synaptic vesicles.  相似文献   

17.
《Autophagy》2013,9(2):271-272
Within the kidneys, podocytes are highly specialized postmitotic cells. Podocytes, together with endothelial cells and the glomerular basement membrane (GBM), maintain the filtration barrier and the normal structure of the glomerular capillary, are involved in the remodeling of the GBM and the endocytosis of filtered proteins, and counteract intracapillary hydrostatic pressure. The (pro)renin receptor [(P)RR], as ATP6AP2, is an accessory subunit of the vacuolar H+-ATPase, implying more fundamental developmental functions for the (pro)renin receptor in addition to its role in activating the local renin-angiotensin system, and is also expressed in podocytes, where it is involved in both tissue angiotensin II production and (P)RR-mediated intracellular signaling. Overexpression of human (P)RR in rats caused slowly progressive proteinuria and glomerular sclerosis, which suggests that (P)RR-mediated signaling is involved in the development of glomerular diseases. However, the physiological role of the (P)RR in podocytes has not yet been fully understood.  相似文献   

18.
Summary We studied the mechanism of K++ channel activation by minoxidil-sulfate (MxSO4) in fused Madin-Darby canine kidney (MDCK) cells. Patch-clamp techniques were used to assess single channel activity, and fluorescent dye techniques to monitor cell calcium. A Ca+2+-dependent inward-rectifying K++ channel with slope conductances of 53±3 (negative potential range) and 20±3 pS (positive potential range) was identified. Channel activity is minimal in cell-attached patches. MxSO4 initiated both transient channel activation and an increase of intracellular Ca+2+ (from 94.2±9.1 to 475±12.6 nmol/liter). The observation that K++ channel activity of excised inside-out patches was detected only at Ca+2+ concentrations in excess of 10 mol/liter suggests the involvement of additional mechanisms during channel activation by MxSO4.Transient K++ channel activity was also induced in cell-attached patches by 10 mol/liter of the protein kinase C activator 1-oleoyl-2-acetyl-glycerol (OAG). OAG (10 mol/liter in the presence of 1.6 mmol/liter ATP) increased the Ca+2 sensitivity of the K+ channel in inside-out patches significantly by lowering the K mfor Ca+2 from 100 mol/liter to 100 nmol/liter. The channel activation by OAG was reversed by the protein kinase inhibitor H8. Staurosporine, a PKC inhibitor, blocked the effect of MxSO4 on K+ channel activation. We conclude that MxSO4-induced K+ channel activity is mediated by the synergistic effects of an increase in intracellular Ca+2 and a PKC-mediated enhancement of the K+ channel's sensitivity to Ca+2.A. Schwab was recipient of a Feodor-Lynen-Fellowship from the Alexander von Humboldt-Stiftung. This work was supported by NIH grant DK 17433. The authors thank Nikon Instruments Partners in Research Program for their support and generous use of equipment during the course of this study. Minoxidil-sulfate was kindly provided by Upjohn, Kalamazoo, MI.  相似文献   

19.
Proton transport-coupled unisite catalysis was measured with the H+-ATPase from chloroplasts. The reaction was measured in the ATP hydrolysis direction under deenergized conditions and in the ATP synthesis direction under energized conditions. The equilibrium constant of the enzyme does not change upon energization, whereas the dissociation constants of substrates and products change by orders of magnitude. This indicates that the Gibbs free enthalpy derived from proton translocation is used to change binding affinities of substrates and products, and this results in synthesis of free ATP.  相似文献   

20.
Summary Smooth muscle cells normally do not possess fast Na2+ channels, but inward current is carried through two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Using whole-cell voltage clamp of single smooth muscle cells isolated from the longitudinal layer of 18-day pregnant rat uterus, depolarizing pusles, applied from a holding potential of –90 mV, evoked two types of inward current, fast and slow [8]. The fast inward current decayed within 30 ms, depended on [Na]0, and was inhibited by TTX (K0.5 = 27 nM). The slow inward current decayed slowly, was dependent on [Ca]0, and was inhibited by nifedipine. These results suggest that the fast inward current is a fast Na2+ channel current, and that the slow inward current is a Ca2+ channel current was not evident. Thus, the ion channels which generate inward currents in pregnant rat uterine cells are TTX-sensitive fast Na+ channels and dihudropuridine-sensitive slow Ca2+ channels. The number of fast Na+ channels increased during gestation [9]. The averaged current density increased from 0 on day 5, to 0.19 on day 9, to 0.56 on day 14, to 0.90 on day 18, and to 0.86 pA/pF on day 21. This almost linear increase occurs because of an increase in the fraction of cells which possess fast Na2+ channels, and it suggested that the fast Na+ current may be involved in spread of excitation. The Ca2+ channel current density also was higher during the latter half of gestation. These results indicate that the fast Na+ channels and Ca2+ slow channels in myometrium become more numerous as term approaches, and may facilitate parturition. Isoproterenol (beta-agonist) did not affect either ICa(s) or INa(f), whereas Mg2+ (K0.5 of 12 mM) and nifedipine (K0.5 of 3.3 nM) depressed ICa(s). Oxytocin had no effect on INa(f) and actually depressed ICa(s) to a small extect. Therefore, the tocolytic action of beta-agonists cannot be explained by an inhibition of ICa(s), whereas that of Mg2+ can be so explained. The stimulating action of oxytocin on uterine contractions is not due to stimulation of ICa(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号