首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab(-/-) males and Epab(+/-) of both sexes were fertile, Epab(-/-) female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab(-/-) oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab(-/-) germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab(-/-) mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice.  相似文献   

2.
3.
Members of the epidermal growth factor family play important roles in the regulation of cell growth, proliferation, and survival. However, the specific roles of each epidermal growth factor family member with respect to brain injury are not well understood. Gene chip assay screens have revealed drastic increases in the expression of the epidermal growth factor family members amphiregulin and epiregulin following lipopolysaccharide stimulation, which activates an immune response. Both immune activity and endoplasmic reticulum stress are activated during cerebral ischemia. We found that the expression levels of amphiregulin and epiregulin were significantly increased under conditions of cerebral ischemia. Because endoplasmic reticulum stress increased the expression of amphiregulin and epiregulin in glial cells, endoplasmic reticulum stress may be a key mediatory factor of pathophysiological activity. Recombinant epiregulin and amphiregulin proteins effectively inhibited endoplasmic reticulum stress and the subsequent induction of neuronal cell death. Therefore, the upregulation of the epidermal growth factor family members epiregulin and amphiregulin may play a critical role in preventing endoplasmic reticulum stress-induced cell death, thus providing a potential therapy for brain injury.  相似文献   

4.
The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor (EGF)-like factors amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc) are induced in cumulus oocyte complexes (COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins (PGs) and progesterone receptor (PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 (Ptgs2) null mice and Pgr null (PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK (SB203580), MAPK kinase (MEK) 1 (PD98059), and PTGS2 (NS398) but not protein kinase A (PKA) (KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 (AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12-myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis (StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein-coupled receptor and growth factor receptor pathways in ovulating follicles.  相似文献   

5.
Ornskov D  Nexo E  Sorensen BS 《The FEBS journal》2006,273(23):5479-5489
The mechanism behind the growth-promoting effect of insulin is a subject of debate. Employing RT4 bladder cancer cells, we examined the cross-talk between insulin and the epidermal growth factor system. We found that insulin induced a time- and dose-dependent (25-1000 nmol.L(-1) insulin) increase in mRNA expression of three ligands from the epidermal growth factor system. Times for peak increase and fold increase after incubation with 250 nmol.L(-1) insulin were as follows: heparin-binding epidermal growth factor-like growth factor, 0.5 h, 1.4-fold, P < 0.05; epiregulin, 3 h, 14-fold, P < 0.0001; and amphiregulin, 3 h, 12-fold, P < 0.001. Induction of heparin-binding epidermal growth factor-like growth factor and amphiregulin was verified at the protein level. We demonstrate that incubation of RT4 bladder cancer cells for 24 h with 250 nmol.L(-1) insulin increases proliferation by 43% (P < 0.0001) as compared to untreated cells. At the same time, phosphorylation and thereby activation of the epidermal growth factor receptor (HER1) was observed. Both phosphorylation and insulin-induced proliferation were almost completely inhibited by the HER1 inhibitor Iressa (P < 0.0001). This shows that insulin leads to activation of HER1, and that HER1 plays an essential role in mediating the growth-promoting effect of insulin. Iressa inhibited not only the activation of HER1 caused by insulin but also the insulin-induced increase in the three ligands (heparin-binding epidermal growth factor-like growth factor, epiregulin and amphiregulin). As heparin-binding epidermal growth factor-like growth factor was induced before epiregulin and amphiregulin upon insulin stimulation, we speculated that the insulin-induced heparin-binding epidermal growth factor-like growth factor initiated the activation of HER1, and that this in turn led to increased expression of epiregulin and amphiregulin and thereby to continued activation of HER1. Earlier reports have shown that insulin-like growth factor receptor can activate HER1 via its ligand heparin-binding epidermal growth factor-like growth factor. In accord with this, we found that treatment of RT4 cells with recombinant heparin-binding epidermal growth factor-like growth factor mimicked the effect of insulin, with induction of mRNA for the three ligands. However, the insulin-induced increase in mRNA expression of amphiregulin and epiregulin could not be prevented by the heparin-binding epidermal growth factor-like growth factor inhibitor CRM197, demonstrating that heparin-binding epidermal growth factor-like growth factor is not essential for the insulin-induced increase in the expression of these ligands. In conclusion, we show that insulin-induced growth in RT4 cells requires activated HER1. Furthermore, activation of HER1 is required for the insulin-induced increase in expression of the HER1 ligands heparin-binding epidermal growth factor-like growth factor, amphiregulin and epiregulin.  相似文献   

6.
7.
Epiregulin belongs to the epidermal growth factor (EGF) family of polypeptides. Previous studies have underscored the important role of the EGF family of ligands and receptors in the pathology of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). It is not known, however, whether epiregulin may also have a role in these diseases. Therefore, in the present study we investigated the expression and function of epiregulin in five pancreatic cancer cell lines and in PDAC and CP tissue samples. Epiregulin mRNA was present at high (MIA-PaCa-2 cells) or moderate levels (ASPC-1, CAPAN-1, and T3M4) in most cells, but was below detection levels in PANC-1 cells. All the cell lines exhibited a dose-dependent increase in growth in response to recombinant human epiregulin. Epiregulin mRNA levels were increased 2.1-fold in PDAC samples (P < 0.01) and 1.7-fold in CP samples (P < 0.01), when compared with the normal controls. There was no correlation between epiregulin mRNA levels and tumor stage or grade. By in situ hybridization, a moderate to intense epiregulin mRNA signal was present in most pancreatic cancer cells in PDAC. In contrast, only a weak (normal pancreas) to moderate (CP) signals were present in the ductal and acinar cells in CP. These findings suggest that epiregulin may contribute to the pathobiology of PDAC, and may also have a role in CP.  相似文献   

8.
Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.  相似文献   

9.
Sprouty family proteins are novel regulators of growth factor actions. Human Sprouty 2 (hSPRY2) inhibits the proliferation of a number of different cell types. However, the mechanisms involved in the anti-proliferative actions of hSPRY2 remain to be elucidated. Here we have demonstrated that hSPRY2 increases the amount of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and decreases its phosphorylation. The resultant increase in PTEN activity is reflected in decreased activation of Akt by epidermal growth factor and serum. Consistent with increased PTEN activity, in hSPRY2-expressing cells, the progression of cells from the G1 to S phase is decreased. By using PTEN null primary mouse embryonic fibroblasts and their isogenic controls as well as small interfering RNA against PTEN, we demonstrated that PTEN is necessary for hSPRY2 to inhibit Akt activation by epidermal growth factor as well as cell proliferation. Overall, we concluded that hSPRY2 mediates its anti-proliferative actions by altering PTEN content and activity.  相似文献   

10.
11.
TACE is required for fetal murine cardiac development and modeling   总被引:8,自引:0,他引:8  
Tumor necrosis factor-alpha converting enzyme (TACE) is a membrane-anchored, Zn-dependent metalloprotease, which belongs to the ADAM (a disintegrin and metalloprotease) family. TACE functions as a membrane sheddase to release the ectodomain portions of many transmembrane proteins, including the precursors of TNFalpha, TGFalpha, several other cytokines, as well as the receptors for TNFalpha, and neuregulin (ErbB4). Mice with TACE(DeltaZn/DeltaZn) null mutation die at birth with phenotypic changes, including failure of eyelid fusion, hair and skin defects, and abnormalities of lung development. Abnormal fetal heart development was not previously described. Herein, we report that TACE(DeltaZn/DeltaZn) null mutant mice by late gestation exhibit markedly enlarged fetal hearts with increased myocardial trabeculation and reduced cell compaction, mimicking the pathological changes of noncompaction of ventricular myocardium. In addition, larger cardiomyocyte cell size and increased cell proliferation were observed in ventricles of TACE(DeltaZn/DeltaZn) knockout mouse hearts. At the molecular level, reduced expression of epidermal growth factor receptor, attenuated protein cleavage of ErbB4, and changes in MAPK activation were also detected in TACE(DeltaZn/DeltaZn) knockout heart tissues. The data suggest that TACE-mediated cell surface protein ectodomain shedding plays an essential and a novel regulatory role during cardiac development and modeling.  相似文献   

12.
Caveolin-1 is not required for murine intestinal cholesterol transport   总被引:9,自引:0,他引:9  
Caveolin-1 (CAV1) is the structural protein of the filamentous coat that decorates the cytoplasmic surface of each caveola. Cell culture studies have implicated CAV1 in playing an important role in intracellular cholesterol trafficking. In addition, it has been reported that CAV1 forms a detergent-resistant protein complex with Annexin-2 in enterocytes that can be disrupted by the cholesterol absorption inhibitor ezetimibe, suggesting a possible role for CAV1 in cholesterol absorption. In this report, we have evaluated cholesterol homeostasis in Cav1 knock-out mice. Deletion of CAV1 does not result in either a compensatory increase of CAV2 or CAV3 in intestine. In addition, Cav1 knock-out mice display normal mRNA and protein levels of Annexin-2 or the putative cholesterol transport protein Niemann-Pick C1-like 1 (NPC1L1) in proximal intestinal mucosa. Fractional cholesterol absorption and fecal neutral sterol excretion are statistically similar in Cav1 knock-out mice and their wild-type littermates. Moreover, oral administration of ezetimibe is equally effective in decreasing cholesterol absorption in Cav1 null mice and wild-type controls. The mRNA expression levels of genes sensitive to intracellular cholesterol concentration (ATP-binding cassette transporters ABCA1 and ABCG5, hydroxymethylglutaryl-CoA synthase and the LDL receptor) are similarly altered in the proximal intestinal mucosa of Cav1 null and wild-type mice following ezetimibe treatment. These results demonstrate that CAV1 is not required for cholesterol absorption or ezetimibe sensitivity in the mouse.  相似文献   

13.
Several growth factors are trophic for the gastrointestinal tract and able to reduce the degree of intestinal damage caused by cytotoxic agents. However, studies of epidermal growth factor (EGF) for chemotherapy-induced intestinal injury are conflicting. The development of a transgenic mouse that specifically overexpresses EGF in the small intestine provided a unique opportunity to assess the contribution of EGF in mucositis. After a course of fluorouracil, transgenic mice fared no better than control mice. Weight recovery was inferior, and mucosal architecture was not preserved. Apoptosis was not decreased and proliferation was not increased in the crypts. To corroborate the findings in transgenic mice, ICR mice were treated with exogenous EGF after receiving fluorouracil. Despite ileal upregulation of native and activated EGF receptor, the mice were not protected from intestinal damage. No benefits were observed with different EGF doses or schedules or routes of EGF administration. Finally, mucositis was induced in mutant mice with specific defects of the EGF signaling axis. Compared with control mice, clinical and histological parameters of intestinal injury after fluorouracil were no different in waved-2 mice, which have functionally diminished EGF receptors, or waved-1 mice, which lack transforming growth factor-alpha, another major ligand for the EGF receptor. These findings do not support a critical role for EGF or its receptor in chemotherapy-induced intestinal injury.  相似文献   

14.
Several peptides, including insulin, epidermal growth factor and vasoactive intestinal polypeptide bind to intestinal epithelial cells. However, it is unclear whether one binding site binds several peptides or whether separate sites exist for each peptide. These studies were designed to examine the specificity of peptide binding sites on intestinal epithelial cells. Peptide binding was measured directly with [125I]radiolabelled peptides to isolated enterocytes prepared from rabbit ileum. The characteristics of insulin and epidermal growth factor binding were similar. Both insulin and epidermal growth factor specific binding was saturable, directly correlated to cell concentration and temperature and pH dependent. The total number of insulin binding sites per cell was 4500, that for epidermal growth factor was 2280. Scatchard analysis for both peptides produced curvilinear plots. Dissociation of both peptides from the binding site was increased in the presence of their respective unlabelled peptide. However, insulin specific binding was not altered by epidermal growth factor, and epidermal growth factor specific binding was unaffected by insulin. Further, both insulin and epidermal growth factor failed to inhibit the specific binding of vasoactive intestinal polypeptide to ileal enterocytes, and vasoactive intestinal polypeptide did not inhibit insulin or epidermal growth factor specific binding. These studies demonstrate that insulin, epidermal growth factor and vasoactive intestinal polypeptide interact with three distinct membrane binding sites on the enterocyte.  相似文献   

15.
In the preovulatory ovarian follicle, mammalian oocytes are maintained in prophase meiotic arrest until the luteinizing hormone (LH) surge induces reentry into the first meiotic division. Dramatic changes in the somatic cells surrounding the oocytes and in the follicular wall are also induced by LH and are necessary for ovulation. Here, we provide genetic evidence that LH-dependent transactivation of the epidermal growth factor receptor (EGFR) is indispensable for oocyte reentry into the meiotic cell cycle, for the synthesis of the extracellular matrix surrounding the oocyte that causes cumulus expansion, and for follicle rupture in vivo. Mice deficient in either amphiregulin or epiregulin, two EGFR ligands, display delayed or reduced oocyte maturation and cumulus expansion. In compound-mutant mice in which loss of one EGFR ligand is associated with decreased signaling from a hypomorphic allele of the EGFR, LH no longer signals oocyte meiotic resumption. Moreover, induction of genes involved in cumulus expansion and follicle rupture is compromised in these mice, resulting in impaired ovulation. Thus, these studies demonstrate that LH induction of epidermal growth factor-like growth factors and EGFR transactivation are essential for the regulation of a critical physiological process such as ovulation and provide new strategies for manipulation of fertility.  相似文献   

16.
The BAH genomic locus encodes three distinct proteins: junctin, humbug, and BAH. All three proteins share common exons, but differ significantly based upon the use of alternative terminal exons. The biological roles of BAH and humbug and their functional relationship to junctin remain unclear. To evaluate the role of BAH in vivo, the catalytic domain of BAH was specifically targeted such that the coding regions of junctin and humbug remained undisturbed. BAH null mice lack measurable BAH protein in several tissues, lack aspartyl beta-hydroxylase activity in liver preparations, and exhibit no hydroxylation of the epidermal growth factor (EGF) domain of clotting Factor X. In addition to reduced fertility in females, BAH null mice display several developmental defects including syndactyly, facial dysmorphology, and a mild defect in hard palate formation. The developmental defects present in BAH null mice are similar to defects observed in knock-outs and hypomorphs of the Notch ligand Serrate-2. In this work, beta-hydroxylation of Asp residues in EGF domains is demonstrated for a soluble form of a Notch ligand, human Jagged-1. These results along with recent reports that another post-translational modification of EGF domains in Notch gene family members (glycosylation by Fringe) alters Notch pathway signaling, lends credence to the suggestion that aspartyl beta-hydroxylation may represent another post-translational modification of EGF domains that can modulate Notch pathway signaling. Previous work has demonstrated increased levels of BAH in certain tumor tissues and a role for BAH in tumorigenesis has been proposed. The role of hydroxylase in tumor formation was tested directly by crossing BAH KO mice with an intestinal tumor model, APCmin mice. Surprisingly, BAH null/APCmin mice show a statistically significant increase in both intestinal polyp size and number when compared with BAH wild-type/APCmin controls. These results suggest that, in contrast to expectations, loss of BAH catalytic activity may promote tumor formation.  相似文献   

17.
We have previously found that epiregulin, a member of epidermal growth factor superfamily, is involved in proinflammatory cytokine production in bone marrow-derived macrophages. In this report, to further assess the role of epiregulin in innate immunity, we measured IL-6 production levels upon lipopolysaccharide and peptidoglycan stimulation in antigen presenting cells including macrophages and dendritic cells. Our analyses using epiregulin-deficient mice with mixed and inbred genetic backgrounds revealed that epiregulin deficiency results in the reduction of IL-6 production levels in both cell types upon peptidoglycan stimulation, and that the extent of this reduction is more evident under the BALB/c background compared with the C57BL/6J background. These results indicated that epiregulin may have a critical role in the regulation of peptidoglycan-mediated proinflammatory cytokine production in antigen presenting cells and innate immunity.  相似文献   

18.
The erbB4 gene encodes one of the four members of the mammalian ErbB family of transmembrane tyrosine kinases. The ErbB4 protein plays a role as a receptor for the neuregulins, a large group of structurally related molecules and a few other epidermal growth factor (EGF)-related polypeptides, such as heparin-binding EGF, betacellulin and epiregulin. The importance of this receptor tyrosine kinase in development has been demonstrated by the generation of mice with a targeted inactivation of the erbB4 gene. Such mice die by embryonic day eleven due to defective trabeculation in the heart, precluding analysis of phenotypes at later stages in development and in the adult. Now, using two unique genetic approaches our laboratories succeeded in overcoming this obstacle. In the first approach, the heart defects of ErbB4 null mutant mice were rescued by transgenic expression of an ErbB4 cDNA under a cardiac-specific myosin promoter. This allowed the generation of ErbB4 mutants that develop into adulthood and are fertile. In the second approach, the role of ErbB4 during mammary gland development was specifically addressed by Cre-mediated deletion of both erbB4 alleles within the mammary epithelium. Below we discuss the progress made studying these genetic models in understanding the physiological roles of ErbB4 with a focus on the mammary gland and the nervous system.  相似文献   

19.
20.
All ligands of the epidermal growth factor receptor (EGFR), which has important roles in development and disease, are released from the membrane by proteases. In several instances, ectodomain release is critical for activation of EGFR ligands, highlighting the importance of identifying EGFR ligand sheddases. Here, we uncovered the sheddases for six EGFR ligands using mouse embryonic cells lacking candidate-releasing enzymes (a disintegrin and metalloprotease [ADAM] 9, 10, 12, 15, 17, and 19). ADAM10 emerged as the main sheddase of EGF and betacellulin, and ADAM17 as the major convertase of epiregulin, transforming growth factor alpha, amphiregulin, and heparin-binding EGF-like growth factor in these cells. Analysis of adam9/12/15/17-/- knockout mice corroborated the essential role of adam17-/- in activating the EGFR in vivo. This comprehensive evaluation of EGFR ligand shedding in a defined experimental system demonstrates that ADAMs have critical roles in releasing all EGFR ligands tested here. Identification of EGFR ligand sheddases is a crucial step toward understanding the mechanism underlying ectodomain release, and has implications for designing novel inhibitors of EGFR-dependent tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号