首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract An oligonucleotide primer (ChInt) was synthesised from the variable internally transcribed spacer (ITS) 1 region of ribosomal DNA (rDNA) of Cylindrocarpon heteronema . PCR with primers ChInt and ITS4 (from a conserved sequence of the rDNA) amplified a 470-bp fragment from several isolates of C. heteronema but not from various apple wood saprophytes. Amplification of this fragment was achieved from 1–2 pg of fungal DNA. These primers amplified a fragment of the same size from DNA extracted from cankered wood but only after impurities were removed from the DNA on a Qiagen tip-5 column. Southern hybridization analysis confirmed the 470-bp fragment from C. heteronema DNA and cankered wood to be identical.  相似文献   

2.
苹果炭疽菌的分子鉴定与检测   总被引:1,自引:0,他引:1  
测定苹果炭疽菌rDNA全序列,比对苹果炭疽菌和其它炭疽菌ITS序列以及构建系统关系树,发现苹果炭疽菌与胶孢炭疽菌的ITS序列相似性高达99.8%,并与胶孢炭疽菌聚在一起,可以明确苹果炭疽菌应属于胶孢炭疽菌。进一步的序列比对发现,苹果炭疽菌的18S rDNA3’端比其它胶孢炭疽菌多出一段379bp的序列,根据这一特有片段设计引物CgF1与通用引物ITS4配对,结果仅能从苹果炭疽菌中扩增出1232bp的特异性条带。用苹果炭疽菌接种离体苹果,以接种发病的病组织总DNA为模板,利用引物CgF1/ITS4进行PCR扩增,同样可以扩增出1232bp的特异性条带,而健康苹果组织DNA中未能扩增出任何条带,表明该方法可用于苹果炭疽菌的鉴定和快速检测。  相似文献   

3.
Specific rDNA ITS amplifications, microsatellite-primed PCR and ITS-SSCP analysis were applied to identify and characterize pre-selected isolates of the edible ectomycorrhizal fungus Lactarius deliciosus in different stages of the life cycle. Sampling was performed from pure cultures, mycorrhizas and soil from experimental plots established with nursery-inoculated pine seedlings. A newly-designed reverse primer (LDITS2R) combined with the universal forward ITS1 allowed to perform specific amplifications of L. deliciosus from all the samples. Microsatellite-primed PCR using the (GTG)5 oligonucleotide as a primer showed clear polymorphisms among the different L. deliciosus isolates. The patterns of mycorrhiza samples showed additional bands corresponding to the plant DNA. Single strand conformation polymorphism (SSCP) analysis of the specific rDNA ITS fragment amplified from 18 L. deliciosus isolates showed nine clearly different patterns. Mycorrhiza and soil samples showed coincident patterns with their respective fungal isolates. Specific rDNA ITS amplifications had not been previously used for SSCP analysis of ectomycorrhizas and extraradical mycelium. This relatively simple and inexpensive technique allows tracking L. deliciosus isolates in different stages of the fungus development. Specific ITS-SSCP analysis is promising in studies of the persistence of inoculated L. deliciosus isolates and their competitiveness with native ectomycorrhizal fungi, especially at the extraradical mycelium stage.  相似文献   

4.
The internal transcribed spacer (ITS) of the ribosomal DNA (rDNA) subunit repeat was sequenced in 12 isolates of Cylindrocladium floridanum and 11 isolates of Cylindrocarpon destructans. Sequences were aligned and compared with ITS sequences of other fungi in GenBank. Some intraspecific variability was present within our collections of C. destructans but not in C. floridanum. Three ITS variants were identified within C. destructans, but there was no apparent association between ITS variants and host or geographic origin. Two internal primers were synthesized for the specific amplification of portions of the ITS for C. floridanum, and two primers were designed to amplify all three variants of C. destructans. The species-specific primers amplified PCR products of the expected length when tested with cultures of C, destructans and C. floridanum from white spruce, black spruce, Norway spruce, red spruce, jack pine, red pine, and black walnut from eight nurseries and three plantations in Quebec. No amplification resulted from PCR reactions on fungal DNA from 26 common contaminants of conifer roots. For amplifications directly from infected tissues, a nested primer PCR using two rounds of amplification was combined with multiplex PCR approach resulting in the amplification of two different species-specific PCR fragments in the same reaction. First, the entire ITS was amplified with one universal primer and a second primer specific to fungi; a second round of amplification was carried out with species-specific primers that amplified a 400-bp PCR product from C. destructans and a 328-bp product from C. floridanum. The species-specific fragments were amplified directly from infected roots from which one or the two fungi had been isolated.  相似文献   

5.
A set of primers was developed for the detection, identification and quantification of common Trichoderma species in soil samples. Based on a broad range master alignment primers were derived to amplify an approximate 540 bp fragment comprising the internal transcribed spacer region 1 (ITS 1), 5.8S rDNA and internal transcribed spacer region 2 (ITS 2) from all taxonomic Clades of the genus Trichoderma. The primer set was applied to test strains as well as community DNA isolated from arable and forest soil. For all tested isolates the corresponding internal transcribed spacer regions of Trichoderma spp. strains were amplified, but none of non-Trichoderma origin. PCR with community DNA from soil yielded products of the expected size. Analysis of a clone library established for an arable site showed that all amplified sequences originated exclusively from Trichoderma species mainly being representatives of the Clades Hamatum, Harzianum and Pachybasioides and comprising most of the species known for biocontrol ability. In a realtime PCR approach the primer set uTf/uTr also proved to be a suitable system to quantify DNA of Trichoderma spp. in soils.  相似文献   

6.
The genetic relationship of 34 isolates of Stenocarpella maydis from different geographic regions in South Africa was analysed by random amplified polymorphic DNA (RAPD) and ribosomal DNA markers. Two genetic groups were differentiated by using three RAPD primers and correlated to the cultural morphology of the isolates. Of all the isolates tested, 79.4% were clustered into RAPD group I (RG I), which did not sporulate when cultured on potato dextrose agar (PDA) at 25°C for 10 days. The rest of the isolates designated as RG II sporulated on PDA medium and showed a higher genetic variation. Ribosomal DNA (rDNA) was amplified using polymerase chain reaction (PCR) with the universal primers, internal transcribed spacer (ITS) 1 and ITS 4. Restriction digestion of PCR products displayed three types (RF A, RF B and RF C) of profiles. RF A was in accordance with RG I. RF B was consistent with RG II except for one isolate, U5. However, U5 displayed a unique profile and had no restriction sites for Hpa II and Hae III. The results indicate that two distinct genetic groups exist among S. maydis isolates from maize in S. Africa. The ITS1 and ITS2 regions of rDNA were sequenced and primers were designed. The designed primer pair P1/P2 permitted a sensitive and specific detection of S. maydis .  相似文献   

7.
A polymerase chain reaction assay was developed for detection of Fusarium sporotrichioides, a plant pathogen in many parts of the world. Based on small nucleotide differences in ITS2 (Internal Transcribed Spacer) rDNA of our local isolate of F. sporotrichioides (Accession No. AY510069) and other isolates found in NCBI/GeneBank database, species specific primer FspITS2K was selected. Primer pair FspITS2K and P28SL amplified a fragment of 288 bp containing a portion of ITS2 and 28S rDNA of all the F. sporotrichioides isolates tested, originated from different hosts and regions of the world but did not amplify any other species of Fusarium and plant's DNA. To use the PCR assay in seed health testing, a protocol was setup for the rapid and effective preparations of fungal DNA from wheat seeds. The method developed may be useful for the rapid detection and identification of F. sporotrichioides both from culture and from plant tissue.  相似文献   

8.
A primer able to amplify the internal transcribed spacers (ITS) of the ribosomal DNA (rDNA), having enhanced specificity for ascomycetes, was identified by reviewing fungal ribosomal DNA sequences deposited in GenBank. The specificity of the primer, named ITS4A, was tested with DNA extracted from several species of ascomycetes, basidiomycetes, zygomycetes, mastigomycetes and mitosporic fungi (formerly deuteromycetes) and also from plants. The PCR annealing temperature most specific for ascomycetes was found to be 62 degrees C and 64 degrees C for the primer pairs ITS5 + ITS4A and ITS1F + ITS4A, respectively. At these annealing temperatures, all ascomycetous DNA samples were amplified efficiently with the ITS4A primer. The sensitivity limit was in the range 10(-14) g of DNA. This primer could also provide useful tools in suggesting the affinities of many mitosporic fungi with their perfect states.  相似文献   

9.
Fifty-three strains of saturn-spored yeasts were analyzed by means of restriction analysis of the amplified fragment of rDNA which comprised the 5.8S rRNA gene and the internal transcribed spacers ITS1 and ITS2. The use of endonucleases HaeIII and MspI enabled clear differentiation of yeast species Williopsis mucosa, W. salicorniae, Zygowilliopsis californica, Komagataea pratensis, and the Williopsis sensu stricto complex. Minisatellite primer M13 was proposed for the differentiation between twin species of Williopsis sensu stricto, which have identical restriction profiles. PCR with primer M13 enabled reidentification of a number of collection strains, species identification of saturn-spored isolates from the Far East, and detection of three strains affiliated to novel taxa. The latter have unique PCR profiles and differ in the nucleotide sequences of ITS1 and ITS2 fragments of rDNA. Possible variations in the results obtained with different molecular methods are discussed.  相似文献   

10.
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.  相似文献   

11.
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.  相似文献   

12.
PCR was used to amplify a targeted region of the ribosomal DNA of 76 Candida spp. isolates from immunocompromised and seriously diseased patients. Thirty-seven strains isolated from different anatomical sites of 11 patients infected with HIV (Vitória, ES, Brazil), 26 isolates from patients under treatment at Odilon Behrens Hospital and 13 isolates from skin and urine samples from S?o Marcos Clinical Analysis Laboratory (Belo Horizonte, Brazil) were scored. Fragments of rDNA were amplified using primer pairs ITS1-ITS4, for the amplification of ITS1 and ITS2 regions, including the gene for the 5.8 s subunit. Amplification resulted in fragments ranging in size from 350 to 950 bp. Amplicons were digested with eight restriction enzymes. A pattern of species-specificity among the different medically important Candida species could be identified following restriction digestion of the PCR products. Candida albicans was the species most frequently observed, except for the group of newborns under treatment at the Odilon Behrens Hospital and for the isolates from the clinical analysis laboratory. C. parapsilosis was the species most frequently observed in these two groups.  相似文献   

13.
 The 5.8 S subunit and flanking internal transcribed spacer (ITS) regions in nuclear ribosomal DNA (rDNA) from spores of Glomus mosseae FL156 and UK118 were amplified by polymerase chain reaction (PCR) using ITS1 and ITS4 as primers. The amplification product from template DNA of UK118 was cloned and sequenced (569 bp); the amplified DNA from FL156 was sequenced directly (582 bp). There was a 95% sequence similarity between DNAs amplified from the two isolates; in contrast, major dissimilarities with partial sequences of seven other glomalean taxa were observed. Four oligonucleotide sequences unique to Glomus mosseae were identified as potential primers. Their specificity to Glomus mosseae was assessed by PCR amplification of genomic DNA from spores from 36 glomalean fungi: 13 isolates of Glomus mosseae, two Glomus monosporum, 10 other Glomus isolates, and 11 other glomalean taxa from each of four other genera. The Glomus mosseae isolates were from a broad range of temperate zone agricultural soils. Oligonucleotide pair GMOS1 : GMOS2 primed specific amplification of an oligonucleotide sequence (approximately 400 bp) present in all Glomus mosseae isolates and two isolates of the closely related Glomus monosporum. This primer pair did not prime PCR when the template consisted of DNA from any of the other glomalean fungi or any of the nonmycorrhizal controls. In addition, a 24-mer oligonucleotide, designated GMOS5, hybridized with Glomus mosseae and Glomus monosporum DNA amplified by PCR using primer pairs ITS1 : ITS4 and GMOS1 : GMOS2. Colony-blot assays showed that GMOS5 hybridized to 100% and 97% of E. coli pUC19 clones of amplification products from Glomus mosseae FL156 and UK118 DNA templates, respectively, indicating that nearly all clones contained an homologous sequence. GMOS5 was used successfully to detect specifically Glomus mosseae in DNA extracted from colonized sudan grass (Sorghum sudanense L.) roots and amplified by PCR using the primer pair GMOS1 : GMOS2. The results confirm several previous indications that Glomus mosseae and Glomus monosporum are indistinguishable taxonomic entities. Accepted: 14 February 1998  相似文献   

14.
The 5.8S subunit and flanking internal transcribed spacer (ITS) regions in nuclear ribosomal DNA (rDNA) from spores of Glomus etunicatum MD107, MD127, TN101, and FL329 were amplified by polymerase chain reaction (PCR) using ITS1Kpn and ITS4Pst as primers. The amplification products (597, 599, 598, and 613 bp, respectively) were cloned and sequenced. The similarity among ITS region sequences from MD107, MD127, and TN101 was 99%, whereas the sequence similarity between the ITS regions of these three DNAs and that from FL329 was 91%. The 5.8S rDNA sequences of all four G. etunicatum isolates were identical. In contrast, major dissimilarities in the corresponding rDNA sequence regions of other glomalean taxa were observed. Oligonucleotide sequences unique to G. etunicatum were tested for their specificity in PCR amplification of genomic DNA from spores of 55 isolates comprising 29 glomalean fungi: 18 isolates of G. etunicatum, five G. intraradices, three G. claroideum, 16 other Glomus isolates, and 11 other glomalean taxa from each of four other genera. The G. etunicatum isolates were from a broad range of geographic regions and soils. The oligonucleotide pair GETU1:GETU2 primed specific amplification of an oligonucleotide sequence (approximately 400 bp) present in all G. etunicatum. This primer pair did not prime PCR when template consisted of DNA from any of the other glomalean fungi or any of the non-mycorrhizal controls, including roots of corn (Zea mays). In addition, the pair successfully detected G. etunicatum in nested PCR using a primary PCR product amplified from highly diluted extracts of colonized corn roots using modified ITS1:ITS4 primers. In the phylogenetic analysis of Glomus 5.8S and ITS2 rDNA region sequences, which included 500 bootstrap data sets, confidence in the G. etunicatum branch was very strong (90%) and clearly independent of G. claroideum and G. intraradices, to which it is very closely related. Accepted: 15 October 2000  相似文献   

15.
依据GenBank中登录的大豆疫霉菌(Phytophthora sojae)、近缘种及相似种rDNA的ITS区序列差异,进行多重比较后设计合成一对大豆疫霉菌特异引物,并在PCR反应体系和扩增条件优化的基础上,对包括大豆疫霉菌在内的共140个菌株进行PCR检测。结果表明,电泳后只有大豆疫霉菌扩增出一条288bp的特异性条带。运用设计的大豆疫霉菌专用引物(专利申请号200610089105.4)及建立的检测程序对大豆疫霉菌纯培养游动孢子、接种于土壤中的游动孢子和卵孢子以及接种发病的大豆染病组织进行了检测应用,结果显示该检测程序对接种于土壤中的大豆疫霉菌游动孢子和卵孢子的检测理论精度分别达0.3和0.06个孢子,对染病组织检测也表现出了较高的灵敏度。  相似文献   

16.
Green SJ  Freeman S  Hadar Y  Minz D 《Mycologia》2004,96(3):439-451
The Pyrenomycetes, defined physiologically by the formation of a flask-shaped fruiting body present in the sexual form, are a monophyletic group of fungi that consist of a wide diversity of populations including human and plant pathogens. Based on sequence analysis of 18S ribosomal DNA (rDNA), rDNA regions conserved among the Pyrenomycetes but divergent among other organisms were identified and used to develop selective PCR primers and a highly specific primer set. The primers presented here were used to amplify large portions of the 18S rDNA as well as the entire internal transcribed spacer (ITS) region (ITS 1, 5.8S rDNA, and ITS 2). In addition to database searches, the specificity of the primers was verified by PCR amplification of DNA extracted from pure culture isolates and by sequence analysis of fungal rDNA PCR-amplified from environmental samples. In addition, denaturing gradient gel electrophoresis (DGGE) analyses were performed on closely related Colletotrichum isolates serving as a model pathogenic genus of the Pyrenomycetes. Although both ITS and 18S rDNA DGGE analyses of Colletotrichum were consistent with a phylogeny established from sequence analysis of the ITS region, DGGE analysis of the ITS region was found to be more sensitive than DGGE analysis of the 18S rDNA. This study introduces molecular tools for the study of Pyrenomycete fungi by the development of two specific primers, demonstration of the enhanced sensitivity of ITS-DGGE for typing of closely related isolates and application of these tools to environmental samples.  相似文献   

17.
We have developed a single PCR test for the simple and unequivocal differentiation of all currently recognised genotypes of Trichilnella. Partial DNA sequence data were generated from internal transcribed spacers ITS1 and ITS2, and from the expansion segment V region of the ribosomal DNA repeat from five species of Trichinella and two additional genotypes, designated T5 and T6. Five different PCR primer sets were identified which, when used simultaneously in a multiplex PCR, produce a unique electrophoretic DNA banding pattern for each species and genotype including three distinct genotypes of Trichinella pseudospiralis. The banding patterns for each parasite genotype consist of no more than two well-defined DNA fragments, except isolates of T. pseudospiralis which generate multiple, closely migrating bands. The expansion segment V-derived primer set contributes at least one fragment to each genotypic pattern and, therefore, functions both as a means for differentiation as well as an internal control for the PCR. The reliability and reproducibility of each DNA banding pattern were verified using multiple geographical isolates of each Trichinella genotype. The technique was developed further to distinguish genotypes at the level of single muscle larvae using a nested, multiplex PCR, whereby the entire internal transcribed spacer region as well as the gap region of the expansion segment V of the large subunit ribosomal DNA are amplified concurrently in a first-round PCR using primer sets specific for each region, followed by the multiplex PCR for final diagnosis.  相似文献   

18.
19.
A universally primed (UP)-PCR cross hybridization assay was developed for rapid identification of isolates of Rhizoctonia solani into the correct anastomosis group (AG). Twenty-one AG tester isolates belonging to 11 AGs of R. solani were amplified with a single UP primer which generated multiple PCR fragments for each isolate. The amplified products were spotted onto a filter, immobilized and used for cross hybridization against amplification products from the different isolates. Isolates within AG subgroups cross hybridize strongly, whereas between different AGs little or no cross hybridization occurs. Sixteen Rhizoctonia isolates from diseased sugar beets and potatoes were identified using the assay. The results were supported by restriction fragment length polymorphism analysis of the ITS1-5.8S-ITS2 region of the nuclear encoded ribosomal DNA. Through standardization and use of quick non-radioactive labeling techniques, the UP-PCR cross hybridization assay has potential for routine use by modern DNA chip technology.  相似文献   

20.
Desert truffles, hypogeous Pezizales (Ascomycota), are difficult to identify due to evolutionary convergence of morphological characters among taxa that share a similar habitat and mode of spore dispersal. Also, during their symbiotic phase, these are barely distinguishable morphologically, and molecular probes are needed for their identification. We have developed a PCR-based method for the identification of Picoa juniperi and Picoa lefebvrei based on internal transcribed spacers of rDNA. Two PCR primers specific for P. lefebvrei (FLE/RLE) and two specific for P. juniperi (FJU/RJU) were designed. A collection of samples from different geographical areas representing diversity of these species were examined for unique regions of internal transcribed spacers 1, 2 and 5.8S gene of rDNA (ITS) compared to other closely related species. Annealing temperatures and extension times were optimized for each set of primers for maximum specificity and efficiency. They proved to be efficient to specifically detect the presence of P. juniperi and P. lefebvrei by PCR and neither set amplified purified DNA from other truffle species as well as some ascomycetous fungi. The partial small subunit of ribosomal DNA genes of P. juniperi were amplified with the genomic DNA extracted from Helianthemum ledifolium var. ledifolium roots by nested polymerase chain reaction (PCR) using the universal fungal primer pair ITS1/ITS4 and specific primer pair FTC/RTC, which was designed based on internal transcribed spacer 1, 2 and 5.8S gene of rDNA sequences of P juniperi. The nested-PCR was sensitive enough to re-amplify the direct-PCR product, resulting in a DNA fragment of 426 bp. The efficacy of nested-PCR showed that it could re-amplify the direct-PCR product and detect 200 fg genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号