首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Cholangiocarcinoma (CCA) is an aggressive disease with limited effective treatment options. The PI3K/Akt/mTOR pathway represents an attractive therapeutic target due to its frequent dysregulation in CCA. MK2206, an allosteric Akt inhibitor, has been shown to reduce cellular proliferation in other cancers. We hypothesized that MK2206 mediated inhibition of Akt would impact CCA cellular viability.

Study methods

Post treatment with MK2206 (0-2 μM), cellular viability was assessed in two human CCA cell lines—CCLP-1 and SG231—using an MTT assay. Lysates from the MK2206 treated CCA cells were then examined for apoptotic marker expression levels using Western blot analysis. Additionally, the effect on cellular proliferation of MK2206 treatment on survivin depleted cells was determined.

Results

CCLP-1 and SG231 viability was significantly reduced at MK2206 concentrations of 0.5, 1, and 2 μM by approximately 44%, 53%, and 64% (CCLP-1; p = 0.01) and 32%, 32%, and 42% (SG231; p < 0.00005) respectively. Western analysis revealed a decrease in AKTSer473, while AKTThr308 expression was unchanged. In addition, cleaved PARP as well as survivin expression increased while pro-caspase 3 and 9 levels decreased with treatment. Depletion of survivin in CCLP-1 cells resulted in apoptosis as evidenced by increased cleaved PARP. In addition, survivin siRNA further enhanced the antitumor activity of MK2206.

Conclusions

This study demonstrates that by blocking phosphorylation of Akt at serine473, CCA cellular growth is reduced. The growth suppression appears to be mediated via apoptosis. Importantly, combination of survivin siRNA transfection and MK2206 treatment significantly decreased cell viability.  相似文献   

2.
Promyelocytic leukemia protein (PML) is a tumor suppressor possessing multiple modes of action, including induction of apoptosis. We unexpectedly find that PML promotes necroptosis in addition to apoptosis, with Pml −/− macrophages being more resistant to TNF‐mediated necroptosis than wild‐type counterparts and PML‐deficient mice displaying resistance to TNF‐induced systemic inflammatory response syndrome. Reduced necroptosis in PML‐deficient cells is associated with attenuated receptor‐interacting protein kinase 1 (RIPK1) activation, as revealed by reduced RIPK1[S166] phosphorylation, and attenuated RIPK1‐RIPK3‐MLKL necrosome complex formation. We show that PML deficiency leads to enhanced TNF‐induced MAPK‐activated kinase 2 (MK2) activation and elevated RIPK1[S321] phosphorylation, which suppresses necrosome formation. MK2 inhibitor treatment or MK2 knockout abrogates resistance to cell death induction in PML‐null cells and mice. PML binds MK2 and p38 MAPK, thereby inhibiting p38‐MK2 interaction and MK2 activation. Moreover, PML participates in autocrine production of TNF induced by cellular inhibitors of apoptosis 1 (cIAP1)/cIAP2 degradation, since PML‐knockout attenuates autocrine TNF. Thus, by targeting MK2 activation and autocrine TNF, PML promotes necroptosis and apoptosis, representing a novel tumor‐suppressive activity for PML.  相似文献   

3.
In this study, the role of substrate stiffness on the endocytic uptake of a cell-penetrating peptide was investigated. The cell-penetrating peptide, an inhibitor of mitogen-activated protein kinase activated protein kinase II (MK2), enters a primary mesothelial cell line predominantly through caveolae. Using tissue culture polystyrene and polyacrylamide gels of varying stiffness for cell culture, and flow cytometry quantification and enzyme-linked immunoassays (ELISA) for uptake assays, we showed that the amount of uptake of the peptide is increased on soft substrates. Further, peptide uptake per cell increased at lower cell density. The improved uptake seen on soft substrates in vitro better correlates with in vivo functional studies where 10–100 µM concentrations of the MK2 inhibitor cell penetrating peptide demonstrated functional activity in several disease models. Additional characterization showed actin polymerization did not affect uptake, while microtubule polymerization had a profound effect on uptake. This work demonstrates that cell culture substrate stiffness can play a role in endocytic uptake, and may be an important consideration to improve correlations between in vitro and in vivo drug efficacy.  相似文献   

4.
Cell penetrating peptides (CPP) have been widely used to increase the cellular delivery of their associated cargo. Multiple modes of uptake have been identified; however, they cannot be predicted a priori. Elucidating these mechanisms is important for understanding peptide function as well as further optimizing cellular delivery. We have developed a class of mitogen activated protein kinase activated protein kinase 2 (MK2) inhibitor peptides, named FAK and YARA that utilize CPP domains to gain cellular access. In this study, we investigate the mechanism of endocytosis of these MK2 inhibitors by examining the uptake of fluorescently labeled peptide in human monocyte (THP‐1) and mesothelial cells, and looking for colocalization with known markers of endocytosis. Our results indicate that uptake of the MK2 inhibitors was minimally enhanced by the addition of the fluorescent label, and that the type of endocytosis used by the inhibitor depends on several factors including concentration, cell type, and which CPP was used. We found that in THP‐1 cells, the uptake of YARA occurred primarily via macropinocytosis, whereas FAK entered via all three mechanisms of endocytosis examined in this study. In mesothelial cells, uptake of YARA occurred via caveolae‐mediated endocytosis, but became less specific at higher concentrations; whereas uptake of FAK occurred through clathrin‐mediated endocytosis. In all cases, the delivery resulted in active inhibition of MK2. In summary, the results support endocytic uptake of fluorescently labeled FAK and YARA in two different cell lines, with the mechanism of uptake dependent on extracellular concentration, cell type, and choice of CPP. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The identification of a potent, selective, and orally available MK2 inhibitor series is described. The initial absence of oral bioavailability was successfully tackled by moving the basic nitrogen of the spiro-4-piperidyl moiety towards the electron-deficient pyrrolepyridinedione core, thereby reducing the pKa and improving Caco-2 permeability. The resulting racemic spiro-3-piperidyl analogues were separated by chiral preparative HPLC, and the activity towards MK2 inhibition was shown to reside mostly in the first eluting stereoisomer. This led to the identification of new MK2 inhibitors, such as (S)-23, with low nanomolar biochemical inhibition (EC50 7.4 nM) and submicromolar cellular target engagement activity (EC50 0.5 μM).  相似文献   

6.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and identification of novel targets is necessary for its diagnosis and treatment. This study aimed to investigate the biological function and clinical significance of tweety homolog 3 (TTYH3) in HCC. TTYH3 overexpression promoted cell proliferation, migration, and invasion and inhibited HCCM3 and Hep3B cell apoptosis. TTYH3 promoted tumor formation and metastasis in vivo. TTYH3 upregulated calcium influx and intracellular chloride concentration, thereby promoting cellular migration and regulating epithelial-mesenchymal transition-related protein expression. The interaction between TTYH3 and MK5 was identified through co-immunoprecipitation assays and protein docking. TTYH3 promoted the expression of MK5, which then activated the GSK3β/β-catenin signaling pathway. MK5 knockdown attenuated the activation of GSK3β/β-catenin signaling by TTYH3. TTYH3 expression was regulated in a positive feedback manner. In clinical HCC samples, TTYH3 was upregulated in the HCC tissues compared to nontumor tissues. Furthermore, high TTYH3 expression was significantly correlated with poor patient survival. The CpG islands were hypomethylated in the promoter region of TTYH3 in HCC tissues. In conclusion, we identified TTYH3 regulates tumor development and progression via MK5/GSK3-β/β-catenin signaling in HCC and promotes itself expression in a positive feedback loop.  相似文献   

7.
Several studies have shown that the multidrug resistant protein MRP2 mediates the transport of chemotherapeutic drugs and normal cell metabolites, including Leukotriene C (LTC4); however direct binding of the LTC4 to MRP2 has not been demonstrated. In this study, a photoreactive analog of LTC4 (IAALTC4) was used to demonstrate its direct binding to MRP2. Our results show specific photoaffinity labeling of MRP2 with IAALTC4 in plasma membranes from MDCKIIMRP2 cells. The photoaffinity labeling signal of MRP2 with IAALTC4 was much lower than that of MRP1, consistent with previous studies whereby the measured Km values of MRP1 and MRP2 for LTC4 were 1 μM and 0.1 μM LTC4, respectively. Competition of IAALTC4 photoaffinity labeling to MRP2 with MK571, a well characterized inhibitor of MRP2 function, showed ~75% reduction in binding in the presence of 50 μM excess MK571. Interestingly, unmodified LTC4 enhanced the photoaffinity labeling of IAALTC4 to MRP2, whereas excess GSH and Quercetin had no significant effect. Mild tryptic digestion of photoaffinity labeled MRP2 revealed several photoaffinity labeled peptides that localized the IAALTC4 binding to a 15 kDa amino acid sequence that contains transmembrane 16 and 17. Together these results provide the first demonstration of direct LTC4 binding to MRP2.  相似文献   

8.
9.
The mitogen-activated protein kinase (MAPK) signalling pathways play pivotal roles in cellular processes such as proliferation, apoptosis, gene regulation, differentiation, and cell motility. The typical mammalian MAPK pathways ERK1/2, JNK, p38MAPK, and ERK5 operate through a concatenation of three successive phosphorylation events mediated by a MAPK kinase kinase, a MAPK kinase, and a MAPK. MAPKs phosphorylate substrates with distinct functions, including other protein kinases referred to as MAPK-activated protein kinases. One family of related MAPK-activated protein kinases includes MK2, MK3, and MK5. While it is generally accepted that MK2 and MK3 are bona fide substrates for p38MAPK, the genuineness of MK5 as a p38MAPK substrate is disputed. This review summarizes the findings pro and contra an authentic p38MAPK-MK5 relationship, discusses possible explanations for these discrepancies, and proposes experiments that may help to unequivocally clarify whether MK5 is indeed a substrate for p38MAPK.  相似文献   

10.
The effects of chloroquine, verapamil and monensin on secretion of very-low-density lipoproteins (VLDLs) were studied in cultured rat hepatocytes. Maximum inhibition of VLDL-triacylglycerol secretion by 50–90% of control was reached at 200 μM chloroquine, 200 μM verapamil and 5 μM monensin, whereas no effect on cellular triacylglycerol synthesis was observed. The inhibition could be seen within 15 min and was reversible after washout of the drugs. Chloroquine and verapamil inhibited both cellular protein synthesis and protein secretion, whereas monesin reduced protein secretion without any effect on protein synthesis. Control experiments with cycloheximide revealed that intact protein synthesis was not necessary for secretion of VLDL-triacylglycerol during 2 h. Electron micrographs of cells treated with chloroquine, verapamil or monensin showed swollen Golgi cisternae containing VLDL-like particles. By morphometry, a more than 2-fold increase in volume fractions and size indices of Golgi complexes and secondary lysosomes was observed, except that monensin had no significant effect on these parameters of secondary lysosomes. These results suggest that the inhibition of VLDL secretion by chloroquine, verapamil and monensin which takes place in the Golgi complex might be due to disruption of trans-membrane proton gradients. An increase in pH of acidic Golgi vesicles may cause swelling and disturb sorting and membrane flow through this organelle.  相似文献   

11.

Background

Classical mammalian mitogen-activated protein kinase (MAPK) pathways consist of a cascade of three successive phosphorylation events resulting in the phosphorylation of a variety of substrates, including another class of protein kinases referred to as MAPK-activating protein kinases (MAPKAPKs). The MAPKAPKs MK2, MK3 and MK5 are closely related, but MK2 and MK3 are the major downstream targets of the p38MAPK pathway, while MK5 can be activated by the atypical MAPK ERK3 and ERK4, protein kinase A (PKA), and maybe p38MAPK. MK2, MK3, and MK5 can phosphorylate the common substrate small heat shock protein 27 (HSP27), a modification that regulates the role of HSP27 in actin polymerization. Both stress and cAMP elevating stimuli can cause F-actin remodeling, but whereas the in vivo role of p38MAPK-MK2 in stress-triggered HSP27 phosphorylation and actin reorganization is well established, it is not known whether MK2 is involved in cAMP/PKA-induced F-actin rearrangements. On the other hand, MK5 can phosphorylate HSP27 and cause cytoskeletal changes in a cAMP/PKA-dependent manner, but its role as HSP27 kinase in stress-induced F-actin remodeling is disputed. Therefore, we wanted to investigate the implication of MK2 and MK5 in stress- and PKA-induced HSP27 phosphorylation.

Results

Using HEK293 cells, we show that MK2, MK3, and MK5 are expressed in these cells, but MK3 protein levels are very moderate. Stress- and cAMP-elevating stimuli, as well as ectopic expression of active MKK6 plus p38MAPK or the catalytic subunit of PKA trigger HSP27 phosphorylation, and specific inhibitors of p38MAPK and PKA prevent this phosphorylation. Depletion of MK2, but not MK3 and MK5 diminished stress-induced HSP27 phosphorylation, while only knockdown of MK5 reduced PKA-induced phosphoHSP27 levels. Stimulation of the p38MAPK, but not the PKA pathway, caused activation of MK2.

Conclusion

Our results suggest that in HEK293 cells MK2 is the HSP27 kinase engaged in stress-induced, but not cAMP-induced phosphorylation of HSP27, while MK5 seems to be the sole MK to mediate HSP27 phosphorylation in response to stimulation of the PKA pathway. Thus, despite the same substrate specificity towards HSP27, MK2 and MK5 are implicated in different signaling pathways causing actin reorganization.  相似文献   

12.
In vitro effects of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, calphostin C (PKC inhibitor) and okadaic acid [OA, a protein phosphatase (PP; PP1 and PP2A) inhibitor] on 2-hydroxyestradiol-17β (2-OHE2)-induced oocyte maturation were investigated in the catfish Heteropneustes fossilis. Incubations of postvitellogenic follicles with PMA or OA alone did not induce oocyte maturation. However, co-incubations with 2-OHE2 and PMA (0.05, 0.5 and 5 μM) or 2-OHE2 and OA (0.5, 1.0 or 2.0 μM) increased germinal vesicle breakdown (GVBD) significantly over that of 2-OHE2. Incubation of follicles with calphostin C elicited varied effects on GVBD, low (0.005 and 0.01 μM) and high (5.0 and 10.0 μM) concentrations did not affect GVBD, but medium concentrations (0.05, 0.1, 0.5, 1.0 and 2.5 μM) stimulated it. The medium concentrations elicited a biphasic stimulatory response with peak GVBD at 0.1 μM (54%). Calphostin C (≥ 2.5 μM) inhibited the 2-OHE2-induced GVBD in a concentration-dependent manner during the 24 h incubation. Pre- or post-treatment with calphostin C inhibited the steroid-induced GVBD only at 6 h. In co-incubation studies, both PMA and OA reversed the inhibitory effect of calphostin C: the former partially and the latter fully. The results of the present study show that PKC appears to modulate the 2-OHE2-induced oocyte maturation. The OA-sensitive PP may be involved in the PKC modulation of steroid-induced oocyte maturation.  相似文献   

13.
FRET-based detection of different conformations of MK2   总被引:1,自引:0,他引:1  
MAP kinase-activated protein kinase 2 (MK2 or MAPKAP K2) is a stress-activated enzyme downstream to p38 MAPK. By fusion of green fluorescent protein variants to the N- and C-terminus we analysed conformational changes in the kinase molecule in vitro and in vivo. Activation of MK2 is accompanied by a decrease in fluorescence resonance energy transfer, indicating a transition from an inactive/closed to an active/open conformation with an increase in the apparent distance between the fluorophores of ~9 Å. The closed conformation exists exclusively in the nucleus. Upon stress, the open conformation of MK2 rapidly becomes detectable in the cytoplasm and accumulates in the nucleus only when Crm1-dependent nuclear export is blocked. Hence, in living cells activation of MK2 and its nuclear export are coupled by a phosphorylation-dependent conformational switch.  相似文献   

14.
Acrylamide (AA) can be formed in certain foods by heating, predominantly from the precursor asparagine. It is a carcinogen in animal experiments, but the relevance of dietary exposure for humans is still under debate. There is substantial evidence that glycidamide (GA), metabolically formed from AA by Cyp 2E1-mediated epoxidation, acts as ultimate mutagenic agent. We compared the mutagenic potential of AA and GA in V79-cells, using the hprt mutagenicity-test with N-methyl-N′-nitro-N-nitroso-guanidine (MNNG) as positive control. Whereas MNNG showed marked mutagenic effectivity already at 0.5 μM, AA was inactive up to a concentration of 10 mM. In contrast, GA showed a concentration dependent induction of mutations at concentrations of 800 μM and higher. Human blood was used as model system to investigate genotoxic potential in lymphocytes by single cell gel electrophoresis (comet assay) and by measuring the induction of micronuclei (MN) with bleomycin (BL) as positive control. AA did not induce significant genotoxicity or mutagenicity up to 6000 μM. With GA, concentration dependent DNA damage was observed in the dose range of 300–3000 μM after 4 h incubation. Significant MN-induction was not observed with AA (up to 5000 μM) and GA (up to 1000 μM), whereas BL (4 μM) induced significantly enhanced MN frequencies. Thus, in our systems GA appears to exert a rather moderate genotoxic activity.  相似文献   

15.
Although the MK3 gene was originally found deleted in some cancers, it is highly expressed in others. The relevance of MK3 for oncogenesis is currently not clear. We recently reported that MK3 controls ERK activity via a negative feedback mechanism. This prompted us to investigate a potential role for MK3 in cell proliferation. We here show that overexpression of MK3 induces a proliferative arrest in normal diploid human fibroblasts, characterized by enhanced expression of replication stress- and senescence-associated markers. Surprisingly, MK3 depletion evokes similar senescence characteristics in the fibroblast model. We previously identified MK3 as a binding partner of Polycomb Repressive Complex 1 (PRC1) proteins. In the current study we show that MK3 overexpression results in reduced cellular EZH2 levels and concomitant loss of epigenetic H3K27me3-marking and PRC1/chromatin-occupation at the CDKN2A/INK4A locus. In agreement with this, the PRC1 oncoprotein BMI1, but not the PCR2 protein EZH2, bypasses MK3-induced senescence in fibroblasts and suppresses P16INK4A expression. In contrast, BMI1 does not rescue the MK3 loss-of-function phenotype, suggesting the involvement of multiple different checkpoints in gain and loss of MK3 function. Notably, MK3 ablation enhances proliferation in two different cancer cells. Finally, the fibroblast model was used to evaluate the effect of potential tumorigenic MK3 driver-mutations on cell proliferation and M/SAPK signaling imbalance. Taken together, our findings support a role for MK3 in control of proliferation and replicative life-span, in part through concerted action with BMI1, and suggest that the effect of MK3 modulation or mutation on M/SAPK signaling and, ultimately, proliferation, is cell context-dependent.  相似文献   

16.
p38 MAP kinase (MAPK) isoforms α, β, and γ, are expressed in the heart. p38α appears pro-apoptotic whereas p38β is pro-hypertrophic. The mechanisms mediating these divergent effects are unknown; hence elucidating the downstream signaling of p38 should further our understanding. Downstream effectors include MAPK-activated protein kinase (MK)-3, which is expressed in many tissues including skeletal muscles and heart. We cloned full-length MK3 (MK3.1, 384 aa) and a novel splice variant (MK3.2, 266 aa) from murine heart. For MK3.2, skipping of exons 8 and 9 resulted in a frame-shift in translation of the first 85 base pairs of exon 10 followed by an in-frame stop codon. Of 3 putative phosphorylation sites for p38 MAPK, only Thr-203 remained functional in MK3.2. In addition, MK3.2 lacked nuclear localization and export signals. Quantitative real-time PCR confirmed the presence of these mRNA species in heart and skeletal muscle; however, the relative abundance of MK3.2 differed. Furthermore, whereas total MK3 mRNA was increased, the relative abundance of MK3.2 mRNA decreased in MK2?/? mice. Immunoblotting revealed 2 bands of MK3 immunoreactivity in ventricular lysates. Ectopically expressed MK3.1 localized to the nucleus whereas MK3.2 was distributed throughout the cell; however, whereas MK3.1 translocated to the cytoplasm in response to osmotic stress, MK3.2 was degraded. The p38α/β inhibitor SB203580 prevented the degradation of MK3.2. Furthermore, replacing Thr-203 with alanine prevented the loss of MK3.2 following osmotic stress, as did pretreatment with the proteosome inhibitor MG132. In vitro, GST-MK3.1 was strongly phosphorylated by p38α and p38β, but a poor substrate for p38δ and p38γ. GST-MK3.2 was poorly phosphorylated by p38α and p38β and not phosphorylated by p38δ and p38γ. Hence, differential regulation of MKs may, in part, explain diverse downstream effects mediated by p38 signaling.  相似文献   

17.
The structurally related MAPK‐activated protein kinases (MAPKAPKs or MKs) MK2, MK3 and MK5 are involved in multiple cellular functions, including cell‐cycle control and cellular differentiation. Here, we show that after deregulation of cell‐cycle progression, haematopoietic stem cells (HSCs) in MK2‐deficient mice are reduced in number and show an impaired ability for competitive repopulation in vivo. To understand the underlying molecular mechanism, we dissected the role of MK2 in association with the polycomb group complex (PcG) and generated a MK2 mutant, which is no longer able to bind to PcG. The reduced ability for repopulation is rescued by re‐introduction of MK2, but not by the Edr2‐non‐binding mutant of MK2. Thus, MK2 emerges as a regulator of HSC homeostasis, which could act through chromatin remodelling by the PcG complex.  相似文献   

18.
Recent studies suggest that Sirt inhibition may have beneficial effects on several human diseases such as neurodegenerative diseases and cancer. Coffee is one of most popular beverages with several positive health effects. Therefore, in this paper, potential Sirt inhibitors were screened using coffee extract. First, HPLC was utilized to fractionate coffee extract, then screened using a Sirt1/2 inhibition assay. The screening led to the isolation of a potent Sirt1/2 inhibitor, whose structure was determined as javamide-II (N-caffeoyltryptophan) by NMR. For confirmation, the amide was chemically synthesized and its capacity of inhibiting Sirt1/2 was also compared with the isolated amide. Javamide-II inhibited Sirt2 (IC50; 8.7μM) better than Sirt1(IC50; 34μM). Since javamide-II is a stronger inhibitor for Sirt2 than Sirt1. The kinetic study was performed against Sirt2. The amide exhibited noncompetitive Sirt2 inhibition against the NAD+ (Ki = 9.8 μM) and showed competitive inhibition against the peptide substrate (Ki = 5.3 μM). Also, a docking simulation showed stronger binding pose of javamide-II to Sirt2 than AGK2. In cellular levels, javamide-II was able to increase the acetylation of total lysine, cortactin and histone H3 in neuronal NG108-15 cells. In the same cells, the amide also increased the acetylation of lysine (K382) in p53, but not (K305). This study suggests that Javamide-II found in coffee may be a potent Sirt1/2 inhibitor, probably with potential use in some conditions of human diseases.  相似文献   

19.
MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [P32]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 (IC50=51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [H3]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genisteinsensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells.  相似文献   

20.
In order to investigate the regulation of presynaptic phospholipase D (PLD) activity by calcium and G proteins, we established a permeabilization procedure for rat cortical synaptosomes using Staphylococcus aureus α-toxin (30–100 μg/ml). In permeabilized synaptosomes, PLD activity was significantly stimulated when the concentration of free calcium was increased from 0.1 μM to 1 μM. This activation was inhibited in the presence of KN-62 (1 μM), an inhibitor of calcium/calmodulin-dependent kinase II (CaMKII), but not by the protein kinase C inhibitor, Ro 31-8220 (1–10 μM). Synaptosomal PLD activity was also stimulated in the presence of 1 μM GTPγS. When Rho proteins were inhibited by pretreatment of the synaptosomes with Clostridium difficile toxin B (TcdB; 1–10 ng/ml), the effect of GTPγS was significantly reduced; in contrast, brefeldin A (10–100 μM), an inhibitor of ARF activation, was ineffective. Calcium stimulation of PLD was inhibited by TcdB, but GTPγS-dependent activation was insensitive to KN-62. We conclude that synaptosomal PLD is activated in a pathway which sequentially involves CaMKII and Rho proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号