首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between (835)Ala and (918)Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events.  相似文献   

2.
Signal transduction by the erythropoietin receptor (EPOR) is activated by ligand-mediated receptor homodimerization. However, the relationship between extracellular and intracellular domain oligomerization remains poorly understood. To assess the requirements for dimerization of receptor cytoplasmic sequences for signaling, we overexpressed mutant EPORs in combination with wild-type (WT) EPOR to drive formation of heterodimeric (i.e. WT-mutant) receptor complexes. Dimerization of the membrane-proximal portion of the EPOR cytoplasmic region was found to be critical for the initiation of mitogenic signaling. However, dimerization of the entire EPOR cytoplasmic region was not required. To examine this process more closely, we generated chimeras between the intracellular and transmembrane portions of the EPOR and the extracellular domains of the interleukin-2 receptor beta and gammac chains. These chimeras allowed us to assess more precisely the signaling role of each receptor chain because only heterodimers of WT and mutant receptor chimeras form in the presence of interleukin-2. Coexpression studies demonstrated that a functional receptor complex requires the membrane-proximal region of each receptor subunit in the oligomer to permit activation of JAK2 but only one membrane-distal tail to activate STAT5 and to support cell proliferation. Thus, this study defines key relationships involved in the assembly and activation of the EPOR signal transduction complex which may be applicable to other homodimeric cytokine receptors.  相似文献   

3.
The stoichiometry of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor complex is still unresolved. We have utilised a sensitive, functional assay for receptor homodimerisation to show that GM-CSF induces dimerisation of the common signalling subunit, hbeta(c). We generated a chimeric cytokine receptor in which the extracellular and transmembrane domains of hbeta(c)are fused to the cytoplasmic domain of erythropoietin receptor (EPO-R). Given that to induce EPO-R activation and mitogenic signalling there is a requirement for formation of a specific homodimeric complex, we reasoned that the cytoplasmic domain of EPO-R could be utilised as a highly sensitive reporter for functional homodimer formation. We show that, in the presence of a cytoplasmically truncated GM-CSF alpha-subunit, the hbetac-EPO receptor chimera transduces a mitogenic signal in BaF-B03 in response to GM-CSF. This is consistent with formation of a hbeta(c)homodimer following GM-CSF binding and implies that ligand stimulation induces formation of a higher order complex that contains the hbeta(c)homodimer.  相似文献   

4.
The erythropoietin (EPO) receptor (EPO-R), a member of a large cytokine receptor superfamily, has a 236-amino-acid cytoplasmic region which contains no obvious tyrosine kinase or other catalytic domain. In order to delineate the linear functional domains of the cytoplasmic tail, we generated truncated mutant cDNAs which were transfected into a murine interleukin-3-dependent cell line, Ba/F3, and the EPO-dependent growth characteristics of the stable transfectants were assayed. We identified two unique domains of the cytoplasmic tail. A membrane-proximal positive signal transduction domain of less than or equal to 103 amino acids, in a region highly similar to the interleukin-2 receptor beta chain, was sufficient for EPO-mediated signal transduction. A carboxy-terminal negative-control domain, a serine-rich region of approximately 40 amino acids, increased the EPO requirement for the Ba/F3 transfectants without altering EPO-R cell surface expression, affinity for EPO, receptor oligosaccharide processing, or receptor endocytosis. Truncation of this negative-control domain allowed the Ba/F3 transfectants to grow maximally in only 1 pM EPO, 1/10 the concentration required for growth of cells expressing the wild-type EPO-R. All truncated EPO-R mutants which retained the transmembrane region of the EPO-R polypeptide bound to the gp55 envelope protein of Friend spleen focus-forming virus. Only the functional EPO-R mutants were activated by the gp55, however, suggesting that gp55- and EPO-mediated signaling occur via a similar mechanism.  相似文献   

5.
The primary structure of the rat liver prolactin receptor has been deduced from a single complementary DNA clone. The sequence begins with a putative 19 amino acid signal peptide followed by the 291 amino acid receptor that includes a single 24 amino acid transmembrane segment. In spite of the fact that the prolactin receptor has a much shorter cytoplasmic region than the growth hormone receptor, there is strong localized sequence identity between these two receptors in both the extracellular and cytoplasmic domains, suggesting that the two receptors originated from a common ancestor.  相似文献   

6.
Mehan RS  White NC  Falke JJ 《Biochemistry》2003,42(10):2952-2959
The aspartate receptor of bacterial chemotaxis is representative of a large family of taxis receptors widespread in prokaryotes. The homodimeric receptor associates with cytoplasmic components to form a receptor-kinase signaling complex. Within this complex the receptor is known to directly contact the histidine kinase CheA, the coupling protein CheW, and other receptor dimers. However, the locations and extents of the contact regions on the receptor surface remain ambiguous. The present study applies the protein-interactions-by-cysteine-modification (PICM) method to map out surfaces on the aspartate receptor that are essential for kinase stimulation in the assembled receptor-kinase complex. The approach utilizes 52 engineered cysteine positions scattered over the surface of the receptor periplasmic and cytoplasmic domains. When the bulky, anionic probe 5-fluorescein-maleimide is coupled to these positions, large effects on receptor-mediated kinase stimulation are observed at eight cytoplasmic locations. By contrast, no large effects are observed for probe attachment at exposed positions in the periplasmic domain. The results indicate that essential receptor surface regions are located near the hairpin turn at the distal end of the cytoplasmic domain and in the cytoplasmic adaptation site region. These surface regions include the docking sites for CheA, CheW, and other receptor dimers, as well as surfaces that transmit information from the receptor adaptation sites to the kinase. Smaller effects observed in the cytoplasmic linker or HAMP region suggest this region may also play a role in kinase regulation. A comparison of the activity perturbations caused by a dianionic, bulky probe (5-fluorescein-maleimide), a zwitterionic, bulky probe (5-tetramethyl-rhodamine-maleimide), and a nonionic, smaller probe (N-ethyl-maleimide) reveals the roles of probe size and charge in generating the observed effects on kinase activity. Overall, the results indicate that interactions between the periplasmic domains of different receptor dimers are not required for kinase activation in the signaling complex. By contrast, the observed spatial distribution of protein contact surfaces on the cytoplasmic domain is consistent with both (i) distinct docking sites for cytoplasmic proteins and (ii) interactions between the cytoplasmic domains of different dimers to form a trimer-of-dimers.  相似文献   

7.
Members of the cytokine receptor superfamily have structurally similar extracellular ligand-binding domains yet diverse cytoplasmic regions lacking any obvious catalytic domains. Many of these receptors form ligand-induced oligomers which are likely to participate in transmembrane signaling. A constitutively active (factor-independent) mutant of the erythropoietin receptor (EPO-R), R129C in the exoplasmic domain, forms disulfide-linked homodimers, suggesting that the wild-type EPO-R is activated by ligand-induced homodimerization. Here, we have taken two approaches to probe the role EPO-R dimerization plays in signal transduction. First, on the basis of the crystal structure of the ligand-bound, homodimeric growth hormone receptor (GH-R) and sequence alignment between the GH-R and EPO-R, we identified residues of the EPO-R which may be involved in intersubunit contacts in an EPO-R homodimer. Residue 129 of the EPO-R corresponds to a residue localized to the GH-R dimer interface region. Alanine or cysteine substitutions were introduced at four other residues of the EPO-R predicted to be in the dimer interface region. Substitution of residue E-132 or E-133 with cysteine renders the EPO-R constitutively active. Like the arginine-to-cysteine mutation at position 129 in the exoplasmic domain (R129C), E132C and E133C form disulfide-linked homodimers, suggesting that constitutive activity is due to covalent dimerization. In the second approach, we have coexpressed the wild-type EPO-R with inactive mutants of the receptor missing all or part of the cytosolic domain. These truncated receptors have a dominant inhibitory effect on the proliferative action of the wild-type receptor. Taken together, these results strengthen the hypothesis that an initial step in EPO- and EPO-R-mediated signal transduction is ligand-induced receptor dimerization.  相似文献   

8.
Functional domains of the granulocyte colony-stimulating factor receptor.   总被引:40,自引:7,他引:33  
The granulocyte colony-stimulating factor (G-CSF) receptor has a composite structure consisting of an immunoglobulin(Ig)-like domain, a cytokine receptor-homologous (CRH) domain and three fibronectin type III (FNIII) domains in the extracellular region. Introduction of G-CSF receptor cDNA into IL-3-dependent murine myeloid cell line FDC-P1 and pro-B cell line BAF-B03, which normally do not respond to G-CSF, enabled them to proliferate in response to G-CSF. On the other hand, expression of the G-CSF receptor cDNA in the IL-2-dependent T cell line CTLL-2 did not enable it to grow in response to G-CSF, although G-CSF could transiently stimulate DNA synthesis. Mutational analyses of the G-CSF receptor in FDC-P1 cells indicated that the N-terminal half of the CRH domain was essential for the recognition of G-CSF, but the Ig-like, FNIII and cytoplasmic domains were not. The CRH domain and a portion of the cytoplasmic domain of about 100 amino acids in length were indispensable for transduction of the G-CSF-triggered growth signal.  相似文献   

9.
K Todokoro  S Kuramochi  T Nagasawa  T Abe  Y Ikawa 《Gene》1991,106(2):283-284
Analysis of human erythropoietin receptor-encoding cDNAs revealed the possible existence of a soluble receptor lacking the transmembrane and cytoplasmic domains.  相似文献   

10.
Several signaling cascades are activated during engagement of the erythropoietin receptor to mediate the biological effects of erythropoietin. The members of the insulin receptor substrate (IRS) family of proteins play a central role in signaling for various growth factor receptors and cytokines by acting as docking proteins for the SH2 domains of signaling elements, linking cytokine receptors to diverse downstream pathways. In the present study we provide evidence that the recently cloned IRS-related proteins, Gab1 and Gab2, of the Gab family of proteins, are rapidly phosphorylated on tyrosine during erythropoietin treatment of erythropoietin-responsive cells and provide docking sites for the engagement of the SHP2 phosphatase and the p85 subunit of the phosphatidylinositol 3'-kinase. Furthermore, our data show that Gab1 is the primary IRS-related protein activated by erythropoietin in primary erythroid progenitor cells. In studies to identify the erythropoietin receptor domains required for activation of Gab proteins, we found that tyrosines 425 and 367 in the cytoplasmic domain of the erythropoietin receptor are required for the phosphorylation of Gab2. Taken together, our data demonstrate that Gab proteins are engaged in erythropoietin signaling to mediate downstream activation of the SHP2 and phosphatidylinositol 3'-kinase pathways and possibly participate in the generation of the erythropoietin-induced mitogenic responses.  相似文献   

11.
李德敏  金伯泉 《生命科学》1999,11(1):18-20,17
死亡结构域是存在于肿瘤于死因因子受体Ⅰ型和Fas等能引起细胞凋亡的细胞膜表面受包浆区的一段氨基酸序列,它通过聚合针这些膜表面受体与胞浆信号蛋白联系起来,成为引起细胞凋亡或活化的信号转导通路中重要的一个环节。本文综述了死亡结构域及其在细胞信号转导过程中所起作用的最新进展。  相似文献   

12.
Understanding the basis of specificity in receptor homodimerization versus heterodimerization is essential in determining the role receptor plays in signal transduction. Specificity in each of the interfaces formed during signal transduction involves cooperative interactions between receptor extracellular, transmembrane (TM), and cytoplasmic domains. While methods exist for studying receptor heterodimerization in cell membranes, they are limited to either TM domains expressed in an inverted orientation or capture only heterodimerization in a single assay. To address this limitation, we have developed an assay (DN-AraTM) that enables simultaneous measurement of homodimerization and heterodimerization of type I receptor domains in their native orientation, including both soluble and TM domains. Using integrin αIIb and RAGE (receptor for advanced glycation end products) as model type I receptor systems, we demonstrate both specificity and sensitivity of our approach, which will provide a novel tool to identify specific domain interactions that are important in regulating signal transduction.  相似文献   

13.
The Trp-Ser-X-Trp-Ser motif commonly exists just outside the transmembrane domains of all cytokine receptors so far isolated. The role of this conserved motif in erythropoietin receptor was examined by assessing a series of mutant receptors on erythropoietin-induced signal transduction. Replacement of one of the two conserved Trp residues in the motif to Gly was found to completely abolish the binding of erythropoietin to the receptor and also to lose the ability to transduce the factor-dependent growth signal. While the mutants with one Ser residue converted to Gly or Ala retained full biological activities, the replacement of both conserved Ser residues diminished the functions of the receptor. Furthermore, the receptors lacking a part or all of the Trp-Ser-X-Trp-Ser motif did not respond to erythropoietin. The Trp-Ser-X-Trp-Ser motif, especially Trp residue, located in extracellular domains of the erythropoietin receptor thus appears to play a critical role in receptor-mediated signal transduction.  相似文献   

14.
15.
Interleukin-5 (IL-5) regulates the production and function of B cells, eosinophils, and basophils. The IL-5 receptor (IL-5R) consists of two distinct membrane proteins, alpha and beta. The alpha chain (IL-5R alpha) is specific to IL-5. The beta chain is the common beta chain (beta c) of receptors for IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The cytoplasmic domains of both alpha and beta chains are essential for signal transduction. In this study, we generated cDNAs of IL-5R alpha having various mutations in their cytoplasmic domains and examined the function of these mutants by expressing them in IL-3-dependent FDC-P1 cells. The membrane-proximal proline-rich sequence of the cytoplasmic domain of IL-5R alpha, which is conserved among the alpha chains of IL-5R, IL-3R, and GM-CSF receptor (GM-CSFR), was found to be essential for the IL-5-induced proliferative response, expression of nuclear proto-oncogenes such as c-jun, c-fos, and c-myc, and tyrosine phosphorylation of cellular proteins including JAK2 protein-tyrosine kinase. In addition, analysis using chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c suggested that dimerization of the cytoplasmic domain of beta c may be an important step in activating the IL-5R complex and transducing intracellular growth signals.  相似文献   

16.
Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental stimuli by autophosphorylation and phospho-transfer. HK typically contains a periplasmic sensor domain that regulates the cytoplasmic kinase domain through a conserved cytoplasmic linker. How signal is transduced from the ligand-binding site across the membrane barrier remains unclear. Here, we analyse two linker regions of a typical HK, DctB. One region connects the first transmembrane helix with the periplasmic Per-ARNT-Sim domains, while the other one connects the second transmembrane helix with the cytoplasmic kinase domains. We identify a leucine residue in the first linker region to be essential for the signal transduction and for maintaining the delicate balance of the dimeric interface, which is key to its activities. We also show that the other linker, belonging to the S-helix coiled-coil family, plays essential roles in signal transduction inside the cell. Furthermore, by combining mutations with opposing activities in the two regions, we show that these two signalling transduction elements are integrated to produce a combined effect on the final activity of DctB.  相似文献   

17.
Signaling through hematopoietic cytokine receptors such as the erythropoietin receptor (EpoR) depends on the activation of a receptor-bound Janus kinase (JAK) and tyrosine phosphorylation of the cytoplasmic domain. To visualize the EpoR and elucidate structural requirements coordinating signal transduction, we probed the EpoR by inserting the green fluorescent protein (GFP) at various positions. We show that insertion of GFP in proximity to the transmembrane domain, either in the extracellular or the cytoplasmic domain, results in EpoR-GFP receptors incompetent to elicit biological responses in a factor-dependent cell line or in erythroid progenitor cells. Surprisingly, a receptor harboring GFP insertion in the middle of the cytoplasmic domain, and thereby separating the JAK2 binding site from the tyrosine residues, is capable of supporting signal transduction in response to ligand binding. Comparable with the wild type EpoR, but more efficient than a C-terminal EpoR-GFP fusion, this chimeric receptor promotes the maturation of erythroid progenitor cells and is localized in punctated endosome-like structures. We conclude that the extracellular, transmembrane, and membrane-proximal segment of the cytoplasmic domain form a rigid structural entity whose precise orientation is essential for the initiation of signal transduction, whereas the cytoplasmic domain possesses flexibility in adopting an activated conformation.  相似文献   

18.
Expression of multiple forms of the prolactin receptor in mouse liver   总被引:13,自引:0,他引:13  
We have characterized the PRL receptor (PRL-R) present in mouse liver by purification, cross-linking, and immunological analysis of the protein, and by the isolation of PRL-R cDNA clones. Analysis of the cDNA clones indicates that the liver receptor is actually a family of proteins. Two of these proteins are predicted to be synthesized as precursors of 303 and 292 amino acids, with common signal sequences, extracellular domains, and transmembrane domains; a portion of their cytoplasmic domains are also identical, but these proteins differ markedly in the terminal region of this domain. A third PRL-R protein is predicted to be a truncated form and may be secreted. These multiple PRL-R mRNAs appear to be encoded by at least two genes, with the sequence variation for the two full-length proteins likely due to alternative RNA splicing. These results suggest that the varied actions of PRL may involve multiple receptors that are part of distinct signal transduction pathways.  相似文献   

19.
IL-6 has been known to modulate the growth of many hybridoma cells and also promote resultant antibody productivity. However, IL-6 is so expensive that the use of IL-6-dependent hybridomas for industrial antibody production is not practical. In this study, we aimed at designing antibody/gp130 and antibody/EpoR chimeras which could tightly control cell growth in response to more affordable cognate antigen. Retroviral vectors encoding VH or VL region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2/transmembrane domains of erythropoietin receptor (EpoR) and cytoplasmic domains of either EpoR or gp130, were constructed, and a homodimeric or a heterodimeric pair of chimeric receptor combinations (VH-gp130 and VL-gp130 or VH-gp130 and VL-EpoR) were expressed in an IL-6-dependent hybridoma 7TD1. The chimeric receptor-derived growth signal was observed in both combinations, while some residual growth signal was observed in the absence of HEL. To reduce interchain interaction between the two receptor chains, we introduced mutations to the transmembrane domain of both chimera combinations. Consequently, the heterodimeric combination of VH-gp130 and VL-EpoR showed clear HEL-dependent cell growth, while the homodimeric combination of VH-gp130 and VL-gp130 showed reduced cell growth in the absence of HEL. This is the first report that an EpoR-gp130 cytoplasmic domain heterodimer could transduce a growth signal in hybridoma cells, indicating tight and economical growth control of hybridoma cells via our chimeric receptors.  相似文献   

20.
Cloning and characterization of a family of proteins associated with Mpl.   总被引:4,自引:0,他引:4  
Thrombopoietin (TPO) controls the formation of megakaryocytes and platelets from hematopoietic stem cells via activation of the c-Mpl receptor and multiple downstream signal transduction pathways. We used two-hybrid screening to identify new proteins that interacted with the cytoplasmic domain of Mpl, and we found a new family of proteins designated A2D (for Ataxin-2 Domain protein). The A2D are 130-kDa proteins that have three regions similar to those of Ataxin-2, the gene product causing familial type 2 spinocerebellar ataxia. A2D has several isoforms with different C-terminal domains, all produced from a single gene by alternative splicing. Northern blotting indicated that the A2D gene is widely expressed in immortalized cell lines and hematopoietic and fetal tissues. A2D proteins were constitutively associated with Mpl in vivo in human hematopoietic UT7 cells. TPO also caused the release of A2D from the activated receptor, and the phosphorylation of A2D on tyrosines residues was dependent on the Mpl C-terminal domain. Finally, A2D bound to the unstimulated erythropoietin receptor, whereas erythropoietin caused dissociation from the erythropoietin receptor, suggesting that A2D proteins are new components of the cytokine signaling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号