首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.  相似文献   

2.
Lotus species are forage legumes with potential as pastures in low-fertility and environmentally constrained soils, owing to their high persistence and yield under those conditions. The aim of this work was the characterization of phenetic and genetic diversity of salt-tolerant bacteria able to establish efficient symbiosis with Lotus spp. A total of 180 isolates able to nodulate Lotus corniculatus and Lotus tenuis from two locations in Granada, Spain, were characterized. Molecular identification of the isolates was performed by repetitive extragenic palindromic PCR (REP-PCR) and 16S rRNA, atpD, and recA gene sequence analyses, showing the presence of bacteria related to different species of the genus Mesorhizobium: Mesorhizobium tarimense/Mesorhizobium tianshanense, Mesorhizobium chacoense/Mesorhizobium albiziae, and the recently described species, Mesorhizobium alhagi. No Mesorhizobium loti-like bacteria were found, although most isolates carried nodC and nifH symbiotic genes closely related to those of M. loti, considered the type species of bacteria nodulating Lotus, and other Lotus rhizobia. A significant portion of the isolates showed both high salt tolerance and good symbiotic performance with L. corniculatus, and many behaved like salt-dependent bacteria, showing faster growth and better symbiotic performance when media were supplemented with Na or Ca salts.Legumes can establish nitrogen-fixing associations with Gram-negative soil bacteria collectively known as rhizobia. Although the symbiotic relationships among rhizobia and many legume species of agricultural importance have been intensively studied, relatively little is known about the symbiotic bacteria of certain plant genera. Lotus is a genus of legumes that includes 125 to 130 species of herbs and small shrubs, mainly distributed in the Northern Hemisphere. Several Lotus species, particularly Lotus corniculatus, Lotus uliginosus, and Lotus tenuis, are used as pasture forage worldwide and are included by phylogenetic studies in the same clade as the model legume Lotus japonicus (4). Until recently, bacteria nodulating Lotus included both intermediate-growing (mesorhizobia) and slow-growing bacteria (12, 16). The mesorhizobia can form effective symbioses with certain Lotus spp. (group I, e.g., L. corniculatus, L. tenuis, or L. japonicus) but form tumor-like structures that do not contain bacteria on L. uliginosus, Lotus subbiflorus, and Lotus angustissimus (group II Lotus spp.) (21, 24). On the other hand, slow-growing strains are usually efficient with Lotus group II species but form no nodules or form inefficient nodules in group I species (12). However, there are rare exceptions to this rule, like strain NZP2037, that can form effective symbioses with both groups of Lotus spp. (23, 25, 28). Furthermore, fast-growing Ensifer meliloti bv. lancerottense strains have been shown to be the symbionts of Lotus lancerottensis but are unable to fix nitrogen with either group I or group II Lotus spp. (19).No apparent relationship exists between the phylogenetic position of Lotus spp. and the type of rhizobia associated. For instance, L. uliginosus and L. angustissimus, which are efficiently nodulated by the bradyrhizobia, are clustered in the same clade as L. corniculatus, L. tenuis, and L. japonicus (clade B) (4), species associated with mesorhizobia. In contrast L. subbiflorus, usually associated with the same rhizobia as L. uliginosus, is clustered in a different clade.The narrow-host-range rhizobia associated with L. corniculatus and other Lotus species were initially classified as Rhizobium loti (13). Later, when the genus Mesorhizobium was created, R. loti was reclassified as Mesorhizobium loti (14), which is considered the type species. Besides the expected differences between the moderate- and the slow-growing Lotus rhizobia, large variabilities in nitrogen-fixing effectiveness (23) as well as in total DNA-DNA hybridization (3, 6) and phylogeny (5, 40) have been shown among the “meso-growing” rhizobia strains classified as M. loti, indicating that they do not form a homogeneous group. Indeed, one of the best-characterized strains of M. loti, strain MAFF303099, has been reclassified as Mesorhizobium huakuii biovar loti (35). In fact, diverse rhizobia have recently been reported to establish symbiosis with Lotus group I species. For instance, bacteria belonging to the newly described species Mesorhizobium gobiense and Mesorhizobium tarimense, were isolated from Lotus frondosus and L. tenuis in China (10). Also, rhizobia assigned to different genera (Rhizobium, Mesorhizobium, Agrobacterium, and Aminobacter) have recently been reported as symbionts of L. tenuis in the Salado River Basin in Argentina (7). While these recent reports indicate that bacteria nodulating Lotus spp. are diverse, their symbiotic genes are rather homogeneous. In fact, most isolates from Argentina and China, regardless their taxonomic assignment, had symbiotic genes closely related to M. loti (7, 10).Soil salinity is a serious and expanding threat to agricultural productivity. Improving crop productivity in saline soils requires selection of well-adapted plant genotypes and, in the case of legumes, highly efficient rhizobial partners adapted to soil conditions. As part of the Euro-South American cooperation project LOTASSA (http://www.lotassa.com/), and aiming to isolate and select for salt-tolerant bacteria able to establish efficient symbiosis with forage Lotus spp., we explored the diversity of Lotus rhizobia in two different locations of Granada province, Spain, where the presence of native Lotus spp. had previously been reported (30).  相似文献   

3.
Ninety symbiotic rhizobial isolates from root nodules of Coronilla varia growing in the Shaanxi province of China were characterized. Combined with the results of RFLP patterns, six genotypes were defined among the rhizobial strains and they were divided into three genomic genera. These included Mesorhizobium sp., M. alhagi, M. amorphae, M. metallidurans/M. gobiense as the dominant group (86.7%), and Rhizobium yanglingense and Agrobacterium tumefaciens as the minor groups, according to analysis of the corresponding 16S rRNA, nodC and nifH genes. Five nodC types, which mainly grouped into the Mesorhizobium genus, were obtained from all the isolates examined, implying that nodC genes probably occurred from the native habitat through lateral transfer and long-term adaptation, finally evolving toward M. alhagi. Four different nifH types, displaying obvious differences compared to those of 16S rRNA and nodC, implied that possible lateral transfer of the symbiotic genes occurred between different genera. The association between soil components and the genetic diversity of the rhizobial population demonstrated that combined genotypes were positively correlated with the pH of soil samples.  相似文献   

4.
In search of effective nitrogen-fixing strains for inoculating Leucaena leucocephala, we assessed the symbiotic efficiency of 41 rhizobial isolates from root nodules of L. leucocephala growing in the arid–hot river valley area in Panxi, China. The genetic diversity of the isolates was studied by analyzing the housekeeping genes 16S rRNA and recA, and the symbiotic genes nifH and nodC. In the nodulation and symbiotic efficiency assay, only 11 of the 41 isolates promoted the growth of L. leucocephala while the majority of the isolates were ineffective in symbiotic nitrogen fixation. Furthermore, one fourth of the isolates had a growth slowing effect on the host. According to the 16S rRNA and recA gene analyses, most of the isolates were Ensifer spp. The remaining isolates were assigned to Rhizobium, Mesorhizobium and Bradyrhizobium. The sequence analyses indicated that the L. leucocephala rhizobia had undergone gene recombination. In contrast to the promiscuity observed as a wide species distribution of the isolates, the results implied that L. leucocephala is preferentially nodulated by strains that share common symbiosis genes. The symbiotic efficiency was not connected to chromosomal background of the symbionts and isolates carrying a similar nifH or nodC showed totally different nitrogen fixation efficiency.  相似文献   

5.
Genetic and symbiotic characterization of 34 isolates from several Lotus species endemic to the Canary Islands showed extraordinary diversity, with bacteria belonging to different species of the genera Mesorhizobium (17 isolates), Sinorhizobium (12 isolates) and Rhizobium/Agrobacterium (5 isolates). In a previous report, we showed that the Sinorhizobium isolates mostly belonged to S. meliloti. Here, we focused on the remaining isolates. The Lotus mesorhizobial strains were distributed in the rrs tree within six poorly resolved branches. Partial sequences from atpD and recA genes produced much better resolved phylogenies that were, with some exceptions, congruent with the ribosomal phylogeny. Thus, up to six different mesorhizobial species were detected, which matched with or were sister species of M. ciceri, M. alhagi, M. plurifarium or M. caraganae, and two represented new lineages that did not correspond to any of the currently recognized species. Neither M. loti nor Bradyrhizobium sp. (Lotus), recognized as the typical Lotus-symbionts, were identified among the Canarian Lotus isolates, although their nodulation genes were closely related to M. loti. However, several subbranches of mesorhizobia nodulating Lotus spp. could be differentiated in a nodC tree, with the isolates from the islands distributed in two of them (A1 and A3). Subbranch A1 included reference strains of M. loti and a group of isolates with a host range compatible with biovar loti, whereas A3 represented a more divergent exclusive subbranch of isolates with a host range almost restricted to endemic Lotus and it could represent a new biovar among the Lotus rhizobia.  相似文献   

6.
A collection of 18 previously unstudied strains isolated from root nodules of Genista germanica (German greenweed) grown in southeast Poland was evaluated for the level of genetic diversity using the BOX-PCR technique and the phylogenetic relationship based on both core (16S rRNA, dnaK, ftsA, glnII, gyrB, recA, rpoB) and nodulation (nodC and nodZ) gene sequences. Each of the 18 G. germanica root nodule isolates displayed unique BOX-PCR patterns, indicating their high level of genomic heterogeneity. Based on the comparative 16S rDNA sequence analysis, 12 isolates were affiliated to the Bradyrhizobium genus and the other strains were most similar to Rhizobium species. Phylogenetic analysis of the core gene sequences indicated that the studied Bradyrhizobium bacteria were most closely related to Bradyrhizobium japonicum, whereas Rhizobium isolates were most closely related to Rhizobium lusitanum and R. leguminosarum. The phylogenies of nodC and nodZ for the Rhizobium strains were incongruent with each other and with the phylogenies inferred from the core gene sequences. All Rhizobium nodZ gene sequences acquired in this study were grouped with the sequences of Bradyrhizobium strains. Some of the studied Rhizobium isolates were placed in the nodC phylogenetic tree together with reference Rhizobium species, while the others were closely related to Bradyrhizobium bacteria. The results provided evidence for horizontal transfer of nodulation genes between Bradyrhizobium and Rhizobium. However, the horizontal transfer of nod genes was not sufficient for Rhizobium strains to form nodules on G. germanica roots, suggesting that symbiotic genes have to be adapted to the bacterial genome.  相似文献   

7.

Background and aims

Rhizobia associated with chickpea in the main chickpea production zone of Xinjiang, China have never been investigated. Here, we present the first systematic investigation of these rhizobia’s genetic diversity and symbiotic interactions with their host plant.

Methods

Ninety-five isolates obtained from chickpea nodules in eight alkaline-saline (pH?8.24–8.45) sites in Xinjiang were characterized by nodulation test, symbiotic gene analysis, PCR-based restriction fragment length polymorphism (RFLP) of the 16S rRNA gene and 16S–23S rRNA intergenic spacer (IGS), BOX-PCR, phylogenies of 16S rRNA and housekeeping genes (atpD, recA and glnII), multilocus sequence analysis (MLSA) and DNA–DNA hybridization.

Results

All 95 isolates were identified within the genus of Mesorhizobium. Similarities less than 96.5% in MLSA and DNA–DNA hybridization values (<50%) between the new isolates and the defined Mesorhizobium species, and high similarities (>98%) of symbiotic genes (nodC and nifH) with those of the well studied chickpea microsymbioints Mesorhizobium ciceri and Mesorhizobium mediterraneum were found.

Conclusions

Chickpea rhizobia in alkaline-saline soils of Xinjiang, China, form a population distinct from the defined Mesorhizobium species. All these chickpea rhizobia in Xinjiang harbored symbiotic genes highly similar to the type strains of two well-studied chickpea rhizobia, M. ciceri and M. mediterraneum, evidencing the possible lateral transfer of symbiotic genes among these different rhizobial species. On the other hand, chickpea may strongly select rhizobia with a unique symbiotic gene background.  相似文献   

8.
Leguminous trees play an important role in agroforestry in Ethiopia, but studies of their rhizobial symbionts are scarce. In earlier studies, we surveyed natural nodulation of native leguminous trees growing in different agro-ecological zones in Southern Ethiopia, isolated 400 rhizobia, and characterized them based on different phenotypic and genotypic methods. In the present study we characterized 18 strains belonging to the genus Mesorhizobium, isolated from nodules of Acacia abyssinica, A. senegal, A. tortilis and Sesbania sesban. Phylogenetic analysis of nearly full-length 16S rRNA gene grouped the test strains into three distinct clades separated from all currently recognized Mesorhizobium species. Three divergent strains formed separate branches while the other 15 strains formed three distinct groups, genospecies I-III. Grouping of the isolates under study based on the house-keeping genes recA, gyrB, rpoB and gltA were consistent and in agreement with that of 16S rRNA. Similarly phylogenetic relationships based on the symbiosis-related genes nodC, nodA and nifH were generally similar to those shown by the core genes, suggesting that these Acacia and Sesbania symbionts have a long history of separate evolution within Mesorhizobium. Cross inoculation experiments demonstrated a large variation in the ability of the test strains to elicit effective nodules. The Sesbania isolates, occupying a distinct clade in the nodC phylogenetic tree, formed effective nodules only with this host legume. The study strongly suggests that this collection of Mesorhizobium strains comprises several new species, and also indicates the role of the symbiotic genes in determining the host range of these bacteria.  相似文献   

9.
Diversity and taxonomic affiliation of chickpea rhizobia were investigated from Ningxia in north central China and their genomic relationships were compared with those from northwestern adjacent regions (Gansu and Xinjiang). Rhizobia were isolated from root-nodules after trapping by chickpea grown in soils from a single site of Ningxia and typed by IGS PCR-RFLP. Representative strains were phylogenetically analyzed on the basis of the 16S rRNA, housekeeping (atpD, recA and glnII) and symbiosis (nodC and nifH) genes. Genetic differentiation and gene flow were estimated among the chickpea microsymbionts from Ningxia, Gansu and Xinjiang. Fifty chickpea rhizobial isolates were obtained and identified as Mesorhizobium muleiense. Their symbiosis genes nodC and nifH were highly similar (98.4 to 100%) to those of other chickpea microsymbionts, except for one representative strain (NG24) that showed low nifH similarities with all the defined Mesorhizobium species. The rhizobial population from Ningxia was genetically similar to that from Gansu, but different from that in Xinjiang as shown by high chromosomal gene flow/low differentiation with the Gansu population but the reverse with the Xinjiang population. This reveals a biogeographic pattern with two main populations in M. muleiense, the Xinjiang population being chromosomally differentiated from Ningxia-Gansu one. M. muleiense was found as the sole main chickpea-nodulating rhizobial symbiont of Ningxia and it was also found in Gansu sharing alkaline-saline soils with Ningxia. Introduction of chickpea in recently cultivated areas in China seems to select from alkaline-saline soils of M. muleiense that acquired symbiotic genes from symbiovar ciceri.  相似文献   

10.
In order to investigate bean-nodulating rhizobia in different types of soil, 41 nodule isolates from acid and alkaline soils in Mexico were characterized. Based upon the phylogenetic studies of 16S rRNA, atpD, glnII, recA, rpoB, gyrB, nifH and nodC genes, the isolates originating from acid soils were identified as the phaseoli symbiovar of the Rhizobium leguminosarum-like group and Rhizobium grahamii, whereas the isolates from alkaline soils were defined as Ensifer americanum sv. mediterranense and Rhizobium radiobacter. The isolates of “R. leguminosarum” and E. americanum harbored nodC and nifH genes, but the symbiotic genes were not detected in the four isolates of the other two species. It was the first time that “R. leguminosarum” and E. americanum have been reported as bean-nodulating bacteria in Mexico. The high similarity of symbiotic genes in the Rhizobium and Ensifer populations showed that these genes had the same origin and have diversified recently in different rhizobial species. Phenotypic characterization revealed that the “R. leguminosarum” population was more adapted to the acid and low salinity conditions, while the E. americanum population preferred alkaline conditions. The findings of this study have improved the knowledge of the diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico.  相似文献   

11.
As an introduced plant, Lablab purpureus serves as a vegetable, herbal medicine, forage and green manure in China. In order to investigate the diversity of rhizobia associated with this plant, a total of 49 rhizobial strains isolated from ten provinces of Southern China were analyzed in the present study with restriction fragment length polymorphism and/or sequence analyses of housekeeping genes (16S rRNA, IGS, atpD, glnII and recA) and symbiotic genes (nifH and nodC). The results defined the L. purpureus rhizobia as 24 IGS-types within 15 rrs-IGS clusters or genomic species belonging to Bradyrhizobium, Rhizobium, Ensifer (synonym of Sinorhizobium) and Mesorhizobium. Bradyrhizobium spp. (81.6%) were the most abundant isolates, half of which were B. elkanii. Most of these rhizobia induced nodules on L. purpureus, but symbiotic genes were only amplified from the Bradyrhizobium and Rhizobium leguminosarum strains. The nodC and nifH phylogenetic trees defined five lineages corresponding to B. yuanmingense, B. japonicum, B. elkanii, B. jicamae and R. leguminosarum. The coherence of housekeeping and symbiotic gene phylogenies demonstrated that the symbiotic genes of the Lablab rhizobia were maintained mainly through vertical transfer. However, a putative lateral transfer of symbiotic genes was found in the B. liaoningense strain. The results in the present study clearly revealed that L. purpureus was a promiscuous host that formed nodules with diverse rhizobia, mainly Bradyrhizobium species, harboring different symbiotic genes.  相似文献   

12.
Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere.  相似文献   

13.
Rhizobia nodulating native Astragalus and Oxytropis spp. in Northern Europe are not well-studied. In this study, we isolated bacteria from nodules of four Astragalus spp. and two Oxytropis spp. from the arctic and subarctic regions of Sweden and Russia. The phylogenetic analyses were performed by using sequences of three housekeeping genes (16S rRNA, rpoB and recA) and two accessory genes (nodC and nifH). The results of our multilocus sequence analysis (MLSA) of the three housekeeping genes tree showed that all the 13 isolates belonged to the genus Mesorhizobium and were positioned in six clades. Our concatenated housekeeping gene tree also suggested that the isolates nodulating Astragalus inopinatus, Astragalus frigidus, Astragalus alpinus ssp. alpinus and Oxytropis revoluta might be designated as four new Mesorhizobium species. The 13 isolates were grouped in three clades in the nodC and nifH trees. 15N analysis suggested that the legumes in association with these isolates were actively fixing nitrogen.  相似文献   

14.
Rhizobium loti is a fast-growing Rhizobium species that has been described as a microsymbiont of plants of the genus Lotus. Nodulation studies show that Lotus plants are nodulated by R loti, but not by most other Rhizobium strains, indicating that R. loti produces specific lipo-chitin oligosaccharides (LCOs) which are necessary for the nodulation of Lotus plants. The LCOs produced by five different Rhizobium ioti strains have been purified and were shown to be N-acetylglucosamine pentasaccharides of which the non-reducing residue is N-methylated and N-acylated with c/s-vaccenic acid (C18:1) or stearic acid (C18:O) and carries a carbamoyl group. In one R. loti strain, NZP2037, an additional carbamoyl group is present on the non-reducing terminal residue. The major class of LCO molecules is substituted on the reducing terminal residue with 4-O-acetylfucose. Addition of LCOs to the roots of Lotus plants results in abundant distortion, swelling and branching of the root hairs, whereas spot inoculation leads to the formation of nodule primordia.  相似文献   

15.
Fifty-eight rhizobial strains were isolated from root nodules of Vicia faba cv. Equina and Vicia faba cv. Minor by the host-trapping method in soils collected from eleven sites in Bejaia, Eastern Algeria. Eleven genotypic groups were distinguished based on the combined PCR/RFLP of 16S rRNA, 16S–23S rRNA intergenic spacer and symbiotic (nodC and nodD-F) genes and further confirmed by multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and rpoB), the 16S rRNA gene and the nodulation genes nodC and nodD. Of the 11 genotypes, 5 were dominant and 2 were the most represented. Most of the strains shared high nodD gene sequence similarity with Rhizobium leguminosarum sv. viciae; their nodC sequences were similar to both Rhizobium leguminosarum and Rhizobium laguerreae. Sequence analyses of the 16S–23S rRNA intergenic spacer showed that all the new strains were phylogenetically related to those described from Vicia sativa and V. faba in several African, European, American and Asian countries, with which they form a group related to Rhizobium leguminosarum. Phylogenetic analysis based on MLSA of 16S rRNA, recA, atpD and rpoB genes allowed the affiliations of strain AM11R to Rhizobium leguminosarum sv. viciae and of strains EB1 and ES8 to Rhizobium laguerreae. In addition, two separate clades with <97% similarity may represent two novel genospecies within the genus Rhizobium.  相似文献   

16.
The diversity of rhizobia that establish symbiosis with Lotus corniculatus has scarcely been studied. Several species of Mesorhizobium are endosymbionts of this legume, including Mesorhizobium loti, the type species of this genus. We analysed the genetic diversity of strains nodulating Lotus corniculatus in Northwest Spain and ten different RAPD patterns were identified among 22 isolates. The phylogenetic analysis of the 16S rRNA gene showed that the isolated strains belong to four divergent phylogenetic groups within the genus Mesorhizobium. These phylogenetic groups are widely distributed worldwide and the strains nodulate L. corniculatus in several countries of Europe, America and Asia. Three of the groups include the currently described Mesorhizobium species M. loti, M. erdmanii and M. jarvisii which are L. corniculatus endosymbionts. An analysis of the recA and atpD genes showed that our strains belong to several clusters, one of them very closely related to M. jarvisii and the remanining ones phylogenetically divergent from all currently described Mesorhizobium species. Some of these clusters include L. corniculatus nodulating strains isolated in Europe, America and Asia, although the recA and atpD genes have been sequenced in only a few L. corniculatus endosymbionts. The results of this study revealed great phylogenetic diversity of strains nodulating L. corniculatus, allowing us to predict that even more diversity will be discovered as further ecosystems are investigated.  相似文献   

17.
Evolutionary relationships of 120 root‐nodulating bacteria isolated from the nodules of Pisum sativum cultivated at 22 different locations of the trans‐Himalayan valleys of Lahaul and Spiti in the state of Himachal Pradesh of India were studied using 16S rRNA gene PCR‐RFLP, ERIC‐PCR, sequencing of 16S rRNA, atpD, recA, nodC and nifH genes, carbon‐source utilization pattern (BIOLOG?), and whole‐cell fatty acid profiling. The results demonstrated that all isolates belonged to Rhizobium leguminosarum symbiovar viciae (Rlv). Isolates from the two valleys were clearly separated on the basis of ERIC fingerprints, carbon‐source utilization pattern, and whole‐cell fatty acid methyl esters. Phylogenetic analysis of atpD, recA, nodC and nifH genes revealed a common Rlv sublineage in Spiti valley. Lahaul valley isolates were represented by three sequence types of atpD and recA genes, and four sequence types of nodC and nifH genes. Genotypes from the two valleys were completely distinct, except for two Lahaul isolates that shared nodC and nifH sequences with Spiti isolates but were otherwise more similar to other Lahaul isolates. Isolates from the two highest Spiti valley sites (above 4000 m) had a distinctive whole‐cell fatty acid profile. Spiti valley isolates are closely related to Rlv sublineages from Xinjiang and Shanxi provinces in China, while Lahaul valley isolates resemble cosmopolitan strains of the western world. The high mountain pass between these valleys represents a boundary between two distinct microbial populations.  相似文献   

18.
Adzuki bean (Vigna angularis) is an important legume crop native to China, but its rhizobia have not been well characterized. In the present study, a total of 60 rhizobial strains isolated from eight provinces of China were analyzed with amplified 16S rRNA gene RFLP, IGS-RFLP, and sequencing analyses of 16S rRNA, atpD, recA, and nodC genes. These strains were identified as genomic species within Rhizobium, Sinorhizobium, Mesorhizobium, Bradyrhizobium, and Ochrobactrum. The most abundant groups were Bradyrhizobium species and Sinorhizobium fredii. Diverse nodC genes were found in these strains, which were mainly co-evolved with the housekeeping genes, but a possible lateral transfer of nodC from Sinorhizobium to Rhizobium was found. Analyses of the genomic and symbiotic gene backgrounds showed that adzuki bean shared the same rhizobial gene pool with soybean (legume native to China) and the exotic Vigna species. All of these data demonstrated that nodule formation is the interaction of rhizobia, host plants, and environment characters. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
Astragalus gombiformis is a desert symbiotic nitrogen-fixing legume of great nutritional value as fodder for camels and goats. However, there are no data published on the rhizobial bacteria that nodulate this wild legume in northern Africa. Thirty-four rhizobial bacteria were isolated from root nodules of A. gombifomis grown in sandy soils of the South-Eastern of Morocco. Twenty-five isolates were able to renodulate their original host and possessed a nodC gene copy. The phenotypic and genotypic characterizations carried out illustrated the diversity of the isolates. Phenotypic analysis showed that isolates used a great number of carbohydrates as sole carbon source. However, although they were isolated from arid sandy soils, the isolates do not tolerate drought stress applied in vitro. The phenotypic diversity corresponded mainly to the diversity in the use of some carbohydrates. The genetic analysis as assessed by repetitive extragenic palindromic (REP)-polymerase chain reaction (PCR) showed that the isolates clustered into 3 groups at a similarity coefficient of 81 %. The nearly-complete 16S rRNA gene sequence from a representative strain of each PCR-group showed they were closely related to members of the genus Mesorhizobium of the family Phyllobactericeae within the Alphaproteobacteria. Sequencing of the housekeeping genes atpD, glnII and recA, and their concatenated phylogenetic analysis, showed they are closely related to Mesorhizobium camelthorni. Sequencing of the symbiotic nodC gene from each strain revealed they had 83.53 % identity with the nodC sequence of the type strain M. camelthorni CCNWXJ 40-4T.  相似文献   

20.
The phylogeny of symbiotic genes of Robinia pseudoacacia (black locust) rhizobia derived from Poland and Japan was studied by comparative sequence analysis of nodA, nodC, nodH, and nifH loci. In phylogenetic trees, black locust symbionts formed a branch of their own suggesting that the spread and maintenance of symbiotic genes within Robinia pseudoacacia rhizobia occurred through vertical transmission. There was 99–100% sequence similarity for nodA genes of Robinia pseudoacacia nodulators, 97–98% for nodC, and 97–100% for nodH and nifH loci. A considerable sequence conservation of sym genes shows that the symbiotic apparatus of Robinia pseudoacacia rhizobia might have evolved under strong host plant constraints. In the nodA and nodC gene phylograms, Robinia pseudoacacia rhizobia grouped with Phaseolus sp. symbionts, although they were not closely related to our isolates based on 16S rRNA genes, and with Mesorhizobium amorphae. nifH gene phylogeny of our isolates followed the evolutionary history of 16S rDNA and Robinia pseudoacacia rhizobia grouped with Mesorhizobium genus species. Nodulation assays revealed that Robinia pseudoacacia rhizobia effectively nodulated their native host and also Amorpha fruticosa and Amorpha californica resulting in a significant enhancement of plant growth. The black locust root nodules are shown to be of indeterminate type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号