首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Recently, many studies have focused on the possibility of restoring mangrove ecosystems by introducing fast‐growing mangroves. However, methods for managing an exotic fast‐growing species to restore mangrove ecosystems and at the same time preventing invasion by introduced species remains unclear. Sonneratia apetala Buch‐Ham is one example of an exotic mangrove with both high ecological value and potential risk for invasion after introduction. To investigate the possibility of reducing the potential for invasion by altering light availability, we simulated different irradiances of S. apetala understory in the greenhouse. For each irradiance treatment, three levels of competition between S. apetala and native mangroves Aegiceras corniculatum (L.) were used: no competition, intraspecific competition and interspecific competition. Compared with A. corniculatum, S. apetala showed a significantly higher growth rate for both height and biomass accumulation under full irradiation. Compared to the full irradiation treatment, the shading treatment significantly reduced the height, total biomass and biomass allocation to leaves of S. apetala by 61.31, 71.0, and 76.2%, respectively, whereas the growth of A. corniculatum was not affected. The results suggested that lowering light availability could inhibit the growth of S. apetala and increase the competitiveness of A. corniculatum. Planting introduced fast‐growing mangroves at a density of approximately 2,000 plants/hm2 is an effective strategy for preventing potential invasion and restoring wetland habitats. By taking advantage of the differences in shade tolerance between fast‐growing exotic mangroves and native mangroves, introduction of fast‐growing mangroves in coastal areas could have huge potential for reforesting mangrove ecosystems.  相似文献   

2.
    

Aim

Information about the importance of propagule pressure and habitat invasibility in invasion success of dispersal‐limited species is scarce. We aimed to assess invasiveness of Quercus rubra within stands of 14 tree species, and the effects of distance from propagule source on invasion success, to highlight limiting factors for further application in nature conservation.

Location

Siemianice Experimental Forest—a common garden forest experiment with 14 tree species, western Poland.

Methods

We investigated aboveground biomass, leaf area index and density of Q. rubra natural regeneration within 53 experimental plots, as well as distance from the seed source. We also analysed light availability changes between 2005 and 2015 on plots of each tree species. We used multiple linear regression and variable importance to quantify the effect of each factor.

Results

All factors tested influenced ecological success of Q. rubra. Invasion success decreased with increasing distance from the seed source and decreasing light availability and was higher within stands of pioneer tree species. Leaf area index depended mostly on tree stand species, density depended on distance from the propagule source and biomass depended on both. Light availability explained 7.2%–30.2% of the variance; tree species—from 36.1% to 57.4%; and distance from the propagule source—from 12.4% to 56.7%.

Main conclusions

Tree stand species, light availability and distance from the propagule source influence ecological success of invasive Q. rubra, displaying their importance for spread of this species. These factors are controllable in forest/conservation management and may be used to prevent Q. rubra invasion. Planting late‐successional tree species that cast dense shade, maintaining canopy closure and removing fruiting trees from surrounding more invasible stands may prevent Q. rubra invasion.
  相似文献   

3.
4.
Background: The explosive growth of urbanisation in Mediterranean ecosystems in Chile has favoured the rapid expansion of exotic plant species, yet factors driving these invasion patterns in adjacent natural areas remain poorly assessed.

Aims: To assess how distance to a suburban/wildland border, habitat type, site-scale disturbance and woody plant cover of native species influences the diversity of exotic species in a natural area surrounding the city of Santiago, Chile.

Methods: Three watersheds were chosen, and the diversity of exotic species was assessed in 36 100-m-long transects, equally distributed over two distance categories and three habitats. For each transect, we measured woody plant cover of native species and frequency of rabbit faeces as a measure of competitive exclusion and site-scale disturbance, respectively.

Results: Species diversity decreased as the distance from the suburban/wildland border increased, and it was found to be higher in north-facing habitats compared to south-facing and alluvial habitats. Neither native woody plant cover nor frequency of rabbit faeces had an effect on species diversity.

Conclusions: The current pattern of exotic plant species in this natural area is mainly influenced by the distance to suburban border and habitat type. An adequate management of conditions favouring exotic species in suburban/wildland border may prevent the spread of these into natural areas next to urban settings.  相似文献   

5.
Invasion ecology has been criticised for its lack of general principles. To explore this criticism, we conducted a meta-analysis that examined characteristics of invasiveness (i.e. the ability of species to establish in, spread to, or become abundant in novel communities) and invasibility (i.e. the susceptibility of habitats to the establishment or proliferation of invaders). There were few consistencies among invasiveness characteristics (3 of 13): established and abundant invaders generally occupy similar habitats as native species, while abundant species tend to be less affected by enemies; germination success and reproductive output were significantly positively associated with invasiveness when results from both stages (establishment/spread and abundance/impact) were combined. Two of six invasibility characteristics were also significant: communities experiencing more disturbance and with higher resource availability sustained greater establishment and proliferation of invaders. We also found that even though ‘propagule pressure’ was considered in only ~29% of studies, it was a significant predictor of both invasiveness and invasibility (55 of 64 total cases). Given that nonindigenous species are likely introduced non-randomly, we contend that ‘propagule biases’ may confound current paradigms in invasion ecology. Examples of patterns that could be confounded by propagule biases include characteristics of good invaders and susceptible habitats, release from enemies, evolution of ‘invasiveness’, and invasional meltdown. We conclude that propagule pressure should serve as the basis of a null model for studies of biological invasions when inferring process from patterns of invasion. An erratum to this article can be found at  相似文献   

6.
  总被引:10,自引:0,他引:10  
Recent theory has suggested a mechanistic relationship between resource availability, competition and invasibility. In a field experiment, in which we manipulated resources and competition, we confirmed that changes in resource availability affected competition intensity, which in turn affected invasibility. We found that fluctuations in resource availability of as short as a few weeks had a large impact on plant invasion success (survival and percentage cover), including up to 1 year following the fluctuations. If resource availability is a primary mechanism controlling invasibility, it may serve as a unifying concept that can integrate earlier ideas regarding invasibility. The results emphasize the important role of history in the invasion process, particularly the occurrence of stochastic, short-lived events that temporarily reduce or suspend competition and increase invasibility. Therefore, it may be very difficult, or even impossible, to reconstruct the ecology of particular invasions after the fact.  相似文献   

7.
    
Aims Within a habitat of multiple plant species, increased resource availabilities and altered species abundances following disturbances create opportunities for exotic species to successfully establish and subsequently naturalize into its non-native environment. Such post-disturbance changes in abiotic and biotic environments may also promote a naturalized exotic species (or invading species) to become invasive through rapid colonization of the habitat sites by reducing the extent and size of resident plant species. By combining species life history traits with that of the disturbance-induced changes in habitat characteristics, we aimed to determine those interacting factors and associated mechanism allowing an exotic invasion to start off.Methods We used a modified version of the classic competition–colonization (CC) model which was formulated first by Hastings (1980) and studied later by Tilman (1994) to explain spatial coexistence of multiple species. Within this model framework, recruitment-limited spatial competition has explicitly been linked with interspecific resource competition without altering the basic assumptions and structure of the original CC model.Important findings The model results showed that at a constant rate of resource supply, invading species can stably coexist with native species via trade-offs between species competitive ability and colonizing ability. On the other hand, the model predicted that with a fluctuating resource condition, invading species can successfully invade a habitat following continuous reductions in the size and extent of native species. Whether or not invading species holds competitive superiority over the native species for limiting resource, we showed that there exists a range of variation in available resource that allows an exotic invasion to start off in post-disturbance habitat. The associated disturbance-induced mechanism promoting invading species to become invasive has been identified. It states that occurrences of disturbances such as fire or clear-cutting influence variation in resource availability, and in addition open up many vacant microsites; given these disturbance-induced changes, invading species with a higher rate of propagule production and with a higher survival rate of adults particularly in low-resource condition recruits microsites at faster rate relative to native competitor species, and with a given range of variation in resource availabilities, it maintains continued expansions following reductions in size and extent of native species. Moreover, we identified those interacting factors and their specific roles that drive this mechanism. These factors include propagule supply, variable resource level and vacant microsite availability. Increased availability of vacant microsites following disturbances creates an opportunity for rapid colonization. Given this opportunity, higher number of propagules supplied by the invading species enhances the rate of colonization success, whereas the resource variation within a range of given thresholds maintains enhanced colonization rate of the invading species while it depresses native competitor species. Owing to the each factor's invasion regulatory ability, controlling one or all of them may have strong negative impact on the occurrence of exotic invasion.  相似文献   

8.
庐山外来植物物种   总被引:8,自引:0,他引:8       下载免费PDF全文
生物入侵正日益成为普遍关注的生态环境问题.在庐山野外调查的基础上,再结合庐山植物引种记录资料的分析,发现庐山引入的2285种植物中,有1301种是室外栽培的,其中有127种82属35科逸为野生,成为庐山的外来物种.通过对这127种外来物种从物种组成、生活型、引入时间和方式、原生地和入侵性进一步分析,可以看出:外来物种主要由菊科、玄参科、禾本科、石竹科和苋科组成,这5科含种数占到总种数的63%;外来物种绝大多数为草本植物,含114种,占总种数的86.76%;原生地主要来源北美洲、其次是欧洲和亚洲,大部分是有意引进,引种目的主要用于观赏,其次是药用;在庐山127种外来物种中,有70种是列于中国100主要外来入侵物种,可见其入侵性还是很强.  相似文献   

9.
    
We tested whether a general spread model could capture macroecological patterns across all damaging invasive forest pests in the United States. We showed that a common constant dispersal kernel model, simulated from the discovery date, explained 67.94% of the variation in range size across all pests, and had 68.00% locational accuracy between predicted and observed locational distributions. Further, by making dispersal a function of forest area and human population density, variation explained increased to 75.60%, with 74.30% accuracy. These results indicated that a single general dispersal kernel model was sufficient to predict the majority of variation in extent and locational distribution across pest species and that proxies of propagule pressure and habitat invasibility – well‐studied predictors of establishment – should also be applied to the dispersal stage. This model provides a key element to forecast novel invaders and to extend pathway‐level risk analyses to include spread.  相似文献   

10.
    
Aim  The establishment success of exotic species is calculated as the fraction of introduced species that have become established, and invasion success is estimated as the fraction of established species that have spread significantly from their points of introduction. Records on species introductions are highly incomplete, so strong conclusions about the tens rule and invasibility of island and continents cannot be drawn.
Location  Global.
Methods  Using Jeschke (2008) as an example, we explain the issue of the inadequacy of data to draw conclusions about the tens rule and invasibility of island and continents.
Results  Lack of adequate data.
Main Conclusion  Jeschke (2008) probably overestimates the establishment and invasion success rates, so his conclusions about violation of the tens rule and that islands are not more susceptible to invasion than continents are misleading.  相似文献   

11.
    
Food selection by foragers is sensitive to the availability of resources, which may vary along geographical gradients. Hence, selectivity of food types by foragers is expected to track these resource gradients. Here we addressed this hypothesis and asked if foraging decisions of seed-eating ants differ along a geographic gradient of habitat productivity. The study was carried out for two years at five sites along a natural climatic gradient, ranging from arid to Mediterranean, where plant productivity varies six-fold across a short geographic distance of 250 km. We found that in ant colonies of the genus Messor, collective foraging decisions differed along the gradient. Specifically, at the high-productivity sites, a stronger association was found between plant seed availability and selectivity, suggesting that colonies respond more accurately to within-patch variation in food amounts. In contrast, colonies in low-productivity sites foraged in patches with higher concentration of seeds, suggesting that they respond more accurately to among-patch variation in food amounts. Moreover, at the high-productivity sites, colonies were more discriminating in their choice of food and preferred bigger seeds, while in the low-productivity sites, where smaller seeds were relatively more abundant, food collection depended mostly on seed availability. An experiment with artificial seed patches performed along the same climatic gradient, revealed no difference in food selectivity across sites when food type and availability were similar, and a general preference for bigger over medium-sized seeds. Overall, our findings suggest that resource availability is an important factor explaining food choice along a climatic gradient and imply that in low-productivity regions small-seeded species incur high predation pressure, whereas in high-productivity regions, large-seeded species suffer higher predation. This could have important consequences for plant species composition, particularly at the face of climate change, which could dramatically alter the foraging decisions of granivores.  相似文献   

12.
Do changes in rainfall patterns affect semiarid annual plant communities?   总被引:1,自引:0,他引:1  
Question: Climate change models forecast a reduction in annual precipitation and more extreme events (less rainy days and longer drought periods between rainfall events), which may have profound effects on terrestrial ecosystems. Plant growth, population and community dynamics in dry environments are likely to be affected by these changes since productivity is already limited by water availability. We tested the effects of reduced precipitation and fewer rain events on three semiarid plant communities dominated by annual species. Location: Three semiarid plant communities from Almería province (SE Spain). Methods: Rain‐out shelters were set up in each community and watering quantity and frequency were manipulated from autumn to early summer. Plant productivity, cover and diversity were measured at the end of the experimental period. Results: We found that a 50% reduction in watering reduced productivity, plant cover and diversity in all three communities. However, neither the 25% reduction in watering nor changes in the frequency of watering events affected these parameters. Conclusions: The lack of response to small reductions in water could be due to the identity and resistance of the plant communities involved, which are adapted to rainfall variability characteristic of arid environments. Therefore, a rainfall reduction of 25% or less may not affect these plant communities in the short term, although higher reductions or long‐term changes in water availability would probably reduce productivity and diversity in these communities.  相似文献   

13.
14.
    
Abstract The present abundance and historical spread of an exotic grass, Agrostis avenacea, is documented for California, USA, and for the vernal pools of San Diego County in particular. Agrostis avenacea is native to Australia where it is a common grass of ephemeral and fluctuating wetlands. California vernal pools, by reason of their extreme variability and high endemism, have been thought to be relatively resistant to invasion. The recent expansion of A. avenacea in San Diego County demonstrates, however, that the alleged resistance is probably a function of a relatively small pool of invaders and a low probability of targeted dispersal. Although A. avenacea is now abundant in pools with little current disturbance, human disturbance appears to have been a major factor that facilitated its initial establishment. This specific instance adds to the mounting evidence that there are probably few, if any, habitats immune to invasion.  相似文献   

15.
  总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
1. Invasion biologists use two main approaches to evaluate the effects of non‐native species (NNS) on diversity of native species (DNS), namely space‐for‐time and time approaches. These approaches have pitfalls related to lack of controls: the former lacks pre‐invasion data, while the latter often lacks data from non‐invaded sites. 2. We propose a framework that combines space‐for‐time and time approaches and which should result in more focused mechanistic hypotheses and experiments to test the causes of invasibility and the effects of NNS on DNS. We illustrate the usefulness of our framework using two case studies: one with the submersed macrophyte, Hydrilla verticillata, in reservoir and the other with the fish, Geophagus proximus, in a large river–floodplain system. 3. Hydrilla verticillata invaded sites with DNS similar to that found in non‐invaded sites, indicating that biotic and/or abiotic factors did not influence invasion success; however, DNS increased over time in invaded sites compared with non‐invaded sites, suggesting that H. verticillata facilitated natives. In contrast, G. proximus invaded sites with higher DNS than non‐invaded sites, suggesting that biotic and/or abiotic factors favouring natives were important for invasion success, but DNS increased in invaded and non‐invaded sites over time, indicating that an independent factor contributed to DNS increases. 4. Conclusions from both studies would have been inaccurate or incomplete if the space‐for‐time and time approaches had not been used in combination as proposed in our framework.  相似文献   

18.
  总被引:4,自引:0,他引:4  
In Mediterranean ecosystems, competition between opportunistic grasses and slower-growing woody species may affect the speed and path of ecosystem recovery and the success of restoration plantings after natural or human-induced disturbance. In this experiment, competitive interactions between Mediterranean annual and perennial grass species (Avena fatua and Brachypodium retusum, respectively) and an important Mediterranean shrub (Rosmarinus offlcinalis) were examined under semi-controlled conditions simulating wet and dry Mediterranean rainfall regimes. The identity of the grass competitor and the level of water availability in the plots interacted to produce differing rates of R. offlcinalis growth but similar levels of mortality. In particular, competition with the perennial grass resulted in very low rates of R. offlcinalis growth at both irrigation levels. Measurements of soil water content showed that both grasses reduced soil moisture to low levels, though this effect was temporary in the case of the winter annual grass. Resistance to hydraulic flow in roots was highest in the perennial grass, smaller but of similar magnitude in the shrub, and much lower in the annual grass. Transpirational response to decreasing leaf water potential was a quick, sharp drop in conductance in R. offlcinalis, in contrast to a moderated decline from much lower initial transpiration rates in B. retusum. The annual grass largely maintained both leaf water potential and transpiration through leaf-tip senescence and death. Quantification of the rate of hydric recuperation of leaves after irrigation of drought-stressed plants showed that the perennial grass recovered at a rate four times that of R. offlcinalis, suggesting a strategy for making quick use of rare summer rains that may contribute to its competitive success. The appropriateness of planting or suppressing grasses in restoration of disturbed sites in Mediterranean Spain is discussed.  相似文献   

19.
1. The issue of freshwater species being threatened by invasion has become central in conservation biology because inland waters exhibit the highest species richness per unit area, but apparently have the highest extinctions rates on the planet. 2. In this article, we evaluated the effects of an exotic, invasive aquatic grass (Urochloa subquadripara– tropical signalgrass) on the diversity and assemblage composition of native macrophytes in four Neotropical water bodies (two reservoirs and two lakes). Species cover was assessed in quadrats, and plant biomass was measured in further quadrats, located in sites where tropical signalgrass dominated (D quadrats) and sites where it was not dominant or entirely absent (ND quadrats). The effects of tropical signalgrass on macrophyte species richness, Shannon diversity and number of macrophyte life forms (a surrogate of functional richness) were assessed through regressions, and composition was assessed with a DCA. The effects of tropical signalgrass biomass on the likelihood of occurrence of specific macrophyte life forms were assessed through logistic regression. 3. Tropical signalgrass had a negative effect on macrophyte richness and Shannon and functional diversity, and also influenced assemblage composition. Emergent, rooted with floating stems and rooted submersed species were negatively affected by tropical signalgrass, while the occurrence of free‐floating species was positively affected. 4. Our results suggest that competition with emergent species and reduction of underwater radiation, which reduces the number of submersed species, counteract facilitation of free‐floating species, contributing to a decrease in plant diversity. In addition, homogenisation of plant assemblages shows that tropical signalgrass reduces the beta diversity in the macrophyte community. 5. Although our results were obtained at fine spatial scales, they are cause for concern because macrophytes are an important part of freshwater diversity.  相似文献   

20.
    
Aim  The enemy release hypothesis is often invoked to explain why some alien plant species become invasive. Here, we investigated relationships between invasiveness, taxonomic isolation and leaf herbivory for tropical alien plant species introduced to a botanical garden in East Africa.
Location  Amani Botanical Garden, East Usambara mountains, northeast Tanzania.
Methods  We measured the proportion of leaves damaged, and the percentage leaf area damaged on individuals of 28 alien plant species. We extracted data on the presence/absence of native congeners and the number of native confamilial species from an inventory of the East Usambara flora. We also obtained data on planting effort for 26 species, from historical records. Linear and generalized linear models were used to analyse the relationships between invasiveness, herbivory and taxonomic isolation.
Results  Mean proportion of leaves damaged per species was significantly explained by taxonomic isolation; proportion of leaves damaged increased with the number of native confamilial species and was greater, on average, for species with native congeners than those without native congeners. The mean percentage of leaf area damaged per species could not be explained by any variables considered in this study. There was no relationship between the degree of herbivory or taxonomic isolation and alien plant species invasiveness, but more-invasive species did have a significantly greater planting effort than less-invasive species.
Conclusions  The role herbivores play in controlling alien plant invasions has been investigated relatively little in the tropics. In this study, although the amount of herbivory suffered by alien plants was related to taxonomic isolation, we found no evidence for leaf-feeding invertebrates having a significant role in invasion, suggesting that other factors may be responsible for differences in species success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号