首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The origin of the turtle plastron is not well understood, andthese nine bones have been homologized to the exoskeletal componentsof the clavicles, the interclavicular bone, and gastralia. Earlierdata from our laboratory showed that the plastral bone-formingcells stained positively for HNK-1 and PDGFR, two markers ofskeletogenic neural crest cells. We have now shown that theHNK-1+ cells are also positive for p75 and FoxD3, affirmingtheir neural crest identity. These cells originate from thedorsal neural tube of stage-17 turtle embryos, several daysafter the original wave of neural crest cells have migratedand differentiated. Moreover, we have demonstrated the existenceof a staging area, above the neural tube and vertebrae, wherethese late-emigrating neural crest cells collect. After residingin the carapacial staging area, these cells migrate to formthe plastral bones. We also demonstrate that one bone of thecarapace, the nuchal bone, also stains with HNK-1 and with antibodiesto PDGFR. The nuchal bone shares several other properties withthe plastral bones, suggesting that it, too, is derived fromneural crest cells. Alligator gastralia stain for HNK-1, whiletheir ribs do not, thus suggesting that the gastralial precursormay also be derived from neural crest cells.  相似文献   

2.
Summary: The migrating cranial neural crest cells of birds, fish, and mammals have been shown to form the membranous bones of the cranium and face. These findings have been extrapolated to suggest that all the dermal bones of the vertebrate exoskeleton are derived from the neural crest ectomesenchyme. However, only one group of extant animals, the Chelonians, has an extensive bony exoskeleton in the trunk. We have previously shown that the autapomorphic carapacial and plastron bones of the turtle shell arise from dermal intramembranous ossification. Here, we show that the bones of the plastron stain positively for HNK‐1 and PDGFRα and are therefore most likely of neural crest origin. This extends the hypothesis of the neural crest origin of the exoskeleton to include the turtle plastron. genesis 31:111–117, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

3.
Neural crest-like cells (NCLC) that express the HNK-1 antigen and form body pigment cells were previously identified in diverse ascidian species. Here we investigate the embryonic origin, migratory activity, and neural crest related gene expression patterns of NCLC in the ascidian Ciona intestinalis. HNK-1 expression first appeared at about the time of larval hatching in dorsal cells of the posterior trunk. In swimming tadpoles, HNK-1 positive cells began to migrate, and after metamorphosis they were localized in the oral and atrial siphons, branchial gill slits, endostyle, and gut. Cleavage arrest experiments showed that NCLC are derived from the A7.6 cells, the precursors of trunk lateral cells (TLC), one of the three types of migratory mesenchymal cells in ascidian embryos. In cleavage arrested embryos, HNK-1 positive TLC were present on the lateral margins of the neural plate and later became localized adjacent to the posterior sensory vesicle, a staging zone for their migration after larval hatching. The Ciona orthologues of seven of sixteen genes that function in the vertebrate neural crest gene regulatory network are expressed in the A7.6/TLC lineage. The vertebrate counterparts of these genes function downstream of neural plate border specification in the regulatory network leading to neural crest development. The results suggest that NCLC and neural crest cells may be homologous cell types originating in the common ancestor of tunicates and vertebrates and support the possibility that a putative regulatory network governing NCLC development was co-opted to produce neural crest cells during vertebrate evolution.  相似文献   

4.
The embryonic origin of peripheral nerve Schwann/sheath cells is still uncertain. Although the neural crest is known to be an important source, it is not clear whether the ventral neural tube also contributes a progenitor population for motor axons. We have used the techniques of immunohistochemistry, electron microscopy and quail-chick grafting to examine this problem. Immunohistochemistry with monoclonal antibody HNK-1 identified a cluster of immunoreactive cells in the sclerotome, at the site of the future ventral root. With the electron microscope, nucleated cells could not be seen breaching the basal lamina of the neural tube, exclusively in the region of the ventral root and preceding axon outgrowth. After grafting a length of crest-ablated quail neural tube in place of host chick neural tube, a population of quail cells was found localized to the ventral root exit zone, associated with the ventral root axons. Taken together, these observations support the possibility of a neural tube origin for ventral root sheath cells, although we found no evidence for a more extensive migration of these cells. The ventral root cells share certain phenotypic traits, such as HNK-1 immunoreactivity, with neural-crest-derived Schwann cells, but are not necessarily identical to them. We argue that while they may help motor axons to exit the neural tube at the correct position, they are unlikely to guide axons beyond the immediate vicinity of the neural tube.  相似文献   

5.
Perturbation of cranial neural crest migration by the HNK-1 antibody   总被引:15,自引:0,他引:15  
The HNK-1 antibody recognizes a carbohydrate moiety that is shared by a family of cell adhesion molecules and is also present on the surface of migrating neural crest cells. Here, the effects of the HNK-1 antibody on neural crest cells were examined in vitro and in vivo. When the HNK-1 antibody was added to neural tube explants in tissue culture, neural crest cells detached from laminin substrates but were unaffected on fibronectin substrates. In order to examine the effects of the HNK-1 antibody in vivo, antibody was injected lateral to the mesencephalic neural tube at the onset of cranial neural crest migration. The injected antibody persisted for approximately 16 hr on the injected side of the embryo and appeared to be most prevalent on the surface of neural crest cells. Embryos fixed within the first 24 hr after injection of HNK-1 antibodies (either whole IgMs or small IgM fragments) showed one or more of the following abnormalities: (1) ectopic neural crest cells external to the neural tube, (2) an accumulation of neural crest cell volume on the lumen of the neural tube, (3) some neural tube anomalies, or (4) a reduction in the neural crest cell volume on the injected side. The ectopic cells and neural tube anomalies persisted in embryos fixed 2 days postinjection. Only embryos having 10 or less somites at the time of injection were affected, suggesting a limited period of sensitivity to the HNK-1 antibody. Control embryos injected with a nonspecific antibody or with a nonblocking antibody against the neural cell adhesion molecule (N-CAM) were unaffected. Previous experiments from this laboratory have demonstrated than an antibody against integrin, a fibronectin and laminin receptor caused defects qualitatively similar to those resulting from HNK-1 antibody injection (M. Bronner-Fraser, J. Cell Biol., 101, 610, 1985). Coinjection of the HNK-1 and integrin antibodies resulted in a greater percentage of affected embryos than with either antibody alone. The additive nature of the effects of the two antibodies suggests that they act at different sites. These results demonstrate that the HNK-1 antibody causes abnormalities in cranial neural crest migration, perhaps by perturbing interactions between neural crest cells and laminin substrates.  相似文献   

6.
During vertebrate embryogenesis, interaction between neural crest cells and the enteric mesenchyme gives rise to the development of the enteric nervous system. In birds, monoclonal antibody HNK-1 is a marker for neural crest cells from the entire rostrocaudal axis. In this study, we aimed to characterize the HNK-1 carrying cells and antigen(s) during the formation of the enteric nervous system in the hindgut. Immunohistological findings showed that HNK-1-positive mesenchymal cells are present in the gut prior to neural crest cell colonization. After neural crest cell colonization this cell type cannot be visualized anymore with the HNK-1 antibody. We characterized the HNK-1 antigens that are present before and after neural crest cell colonization of the hindgut. Immunoblot analysis of plasma membranes from embryonic hindgut revealed a wide array of HNK-1-carrying glycoproteins. We found that two HNK-1 antigens are present in E4 hindgut prior to neural crest cell colonization and that the expression of these antigens disappears after neural crest colonization. These two membrane glycoproteins, G-42 and G-44, have relative molecular masses of 42,000 and 44,000, respectively, and they both have isoelectric points of 5.5 under reducing conditions. We suggest that these HNK-1 antigens and the HNK-1-positive mesenchymal cells have some role in the formation of the enteric nervous system.  相似文献   

7.
The influence of the neural tube on early development of neural crest cells into sensory ganglia was studied in the chick embryo. Silastic membranes were implanted between the neural tube and the somites in 30-somite-stage embryos at the level of somites 21-24, thus separating the early migrated population of neural crest cells from the neural tube. Neural crest cells and peripheral ganglia were visualized by immunofluorescence using the HNK-1 monoclonal antibody and several histochemical techniques. Separation of crest cells from the neural tube caused the selective death of the neural crest cells from which dorsal root ganglia (DRG) would have developed. Complete disappearance of HNK-1 positive cells was evident already 10 hr after silastic implantation, before early differentiation sensory neurons could have reached their peripheral targets. In older embryos, DRG were absent at the level of implantation. In contrast, the development of ventral roots, sympathetic ganglia and adrenal gland was normal, and so was somitic differentiation into cartilage and muscle, while morphogenesis of the vertebrae was perturbed. To overcome the experimentally induced crest cell death, the silastic membranes were impregnated with a 3-day-old embryonic chick neural tube extract. Under these conditions, crest cells which were separated from the tube survived for a period of 30 hr after operation, compared to less than 10 hr in respective controls. The extract of another tissue, the liver, did not protract survival of DRG progenitor cells. Among the cells which survived with neural tube extract, some even succeeded in extending neurites; nevertheless, in absence of normal connections with the central nervous system (CNS) they finally died. Treatment of silastic implanted embryos with nerve growth factor (NGF) did not prevent the experimentally induced crest cell death. These results demonstrate that DRG develop from a population of neural crest cells which depends for its survival and probably for its differentiation upon a signal arising from the CNS, needed as early as the first hours after initiation of migration. Recovery experiments suggest that the subpopulation of crest cells which will develop along the sensory pathway probably depends for its survival and/or differentiation upon a factor contained in the neural tube, which is different from NGF.  相似文献   

8.
We examined deuterostome invertebrates, the sea urchin and amphioxus, and an extant primitive vertebrate, the lamprey, for the presence of structures expressing the HNK-1 carbohydrate and serotonin. In sea urchin embryos and larvae, HNK-1 positive cells were localized in the ciliary bands and in their precursor ectoderm. Serotonergic cells were exclusively observed in the apical organs. In juvenile amphioxus, primary sensory neurons in the dorsal nerve cords were HNK-1 immunoreactive. The juvenile amphioxus nerve cords contained anti-serotonin immunoreactive nerve fibers that seem to be the Rohde axons extending from amphioxus interneurons, the Rohde cells. In lamprey embryos, migrating neural crest cells and primary sensory neurons, including Rohon-Beard cells, expressed the HNK-1 carbohydrate. Lamprey larvae (ammocoetes) contained cell aggregates expressing both the HNK-1 carbohydrate and serotonin in the pronephros and in the regions adjacent to the gut epithelium. Some of these cell aggregates were present in the anti-serotonin positive visceral motor nerve net. Motor neurons and Müller fibers were serotonergic in ammocoetes. Comparison of the expression patterns of HNK-1 carbohydrate among sea urchins, amphioxus and lampreys seem to suggest the possible evolutionary origin of the neural crest, that is, ciliary bands in dipleurula-type ancestors evolved into primary sensory neurons in chordate ancestors, as inferred from Garstang's auricularia hypothesis, and the neural crest originated from the primary sensory neurons.  相似文献   

9.
Summary We have quantitated the distribution of chick neural crest cells after they have completed early migration and are aggregating into ganglia. Variables tested for an influence on the distribution of cells include stage, level of somites, position in each of the primary body axes, and individual embryo. The 11th–15th cervical somites of embryos at stages 30, 35, and 40 somites (s) incubated for 2.5, 3.0, and 3.5 days were labeled with antibody to HNK-1 to detect neural crest cells, and doubly labeled with antibody to HNK-1 and to the 150 kD neurofilament subunit to detect neural crest-derived neurons. Significantly more neural crest cells appear at older stages, but cells are uniformly distributed among the 11th–15th somites at any given stage. Significant differences in the total number of neural crest cells among three embryos sampled at the same stage indicate that the number of cells is independent of the staging series used. As early as the 35 s stage about one-third of the neural crest cells throughout the somite exhibit NF staining. At the 40 s stage, doubly labeled NF cells, as well as HNK-1 labeled cells, aggregate in a circumscribed portion of the mediolateral axis to form presumptive sensory ganglia in the dorsal region of the somites. Also at 40 s a wave of cell aggregation into sympathetic ganglia proceeds anteroposteriorly along the ventral border of the somitic mesenchyme. The results show a sequence of phenotypic expression beginning with neurofilament antigen, then ganglionic aggregation, and finally, in the case of sympathetic neurons, catecholamine transmitter.  相似文献   

10.
The segmental origin and migratory pattern of neural crest cells at the trunk level of avian embryos was studied, with special emphasis on the formation of the dorsal root ganglia (DRG) which organize in the anterior half of each somite. Neural crest cells were visualized using the quail-chick marker and HNK-1 immunofluorescence. The migratory process turned out to be closely correlated with somitic development: when the somites are epithelial in structure few labeled cells were found in a dorsolateral position on the neural tube, uniformly distributed along the craniocaudal axis. Following somitic dissociation into dermomyotome and sclerotome labeled cells follow defined migratory pathways restricted to each anterior somitic half. In contrast, opposite the posterior half of the somites, cells remain grouped in a dorsolateral position on the neural tube. The fate of crest cells originating at the level of the posterior somitic half was investigated by grafting into chick hosts short segments of quail neural primordium, which ended at mid-somitic or at intersomitic levels. It was found that neural crest cells arising opposite the posterior somitic half participate in the formation of the DRG and Schwann cells lining the dorsal and ventral root fibers of the same somitic level as well as of the subsequent one, whereas those cells originating from levels facing the anterior half of a somite participate in the formation of the corresponding DRG. Moreover, crest cells from both segmental halves segregate within each ganglion in a distinct topographical arrangement which reflects their segmental origin on the neural primordium. Labeled cells which relocate from posterior into anterior somitic regions migrate longitudinally along the neural tube. Longitudinal migration of neural crest cells was first observed when the somites are epithelial in structure and is completed after the disappearance of the last cells from the posterior somitic region at a stage corresponding to the organogenesis of the DRG.  相似文献   

11.
Whole mounts and cross-sections of embryos from three species of teleost fish were immunostained with the HNK-1 monoclonal antibody, which recognizes an epitope on migrating neural crest cells. A similar distribution and migration was found in all three species. The crest cells in the head express the HNK-1 epitope after they have segregated from the neural keel. The truncal neural crest cells begin to express the epitope while they still reside in the dorsal region of the neural keel; this has not been observed in other vertebrates. The cephalic and anterior truncal neural crest cells migrate under the ectoderm; the cephalic cells then enter into the gill arches and the anterior truncal cells into the mesentery of the digestive tract where they cease migration. These cephalic and anterior trunk pathways are similar to those described in Xenopus and chick. The neural crest cells of the trunk, after segregation, accumulate in the dorsal wedges between the somites, however, unlike in chick and rat, they do not migrate in the anterior halves of the somites but predominantly between the neural tube and the somites, the major pathway observed in carp and amphibians; some cells migrate over the somites. The HNK-1 staining of whole-mount embryos revealed a structure resembling the Rohon-Beard and extramedullary cells, the primary sensory system in amphibians. Such a system has not been described in fish.  相似文献   

12.
Control of neural crest cell dispersion in the trunk of the avian embryo   总被引:4,自引:1,他引:3  
Many hypotheses have been advanced to explain the orientation and directional migration of neural crest cells. These include positive and negative chemotaxis, haptotaxis, galvanotaxis, and contact inhibition. To test directly the factors that may control the directional dispersion of the neural crest, I have employed a variety of grafting techniques in living embryos. In addition, time-lapse video microscopy has been used to study neural crest cells in tissue culture. Trunk neural crest cells normally disperse from their origin at the dorsal neural tube along two extracellular pathways. One pathway extends laterally between the ectoderm and somites. When either pigmented neural crest cells or neural crest cells isolated from 24-hr cultures are grafted into the space lateral to the somites, they migrate: (1) medially toward the neural tube in the space between the ectoderm and somites and (2) ventrally along intersomitic blood vessels. Once the grafted cells contact the posterior cardinal vein and dorsal aorta they migrate along both blood vessels for several somite lengths in the anterior-posterior axis. Neural crest cells grafted lateral to the somites do not immediately move laterally into the somatic mesoderm of the body wall or the limb. Dispersion of neural crest cells into the mesoderm occurs only after blood vessels and nerves have first invaded, which the grafted cells then follow. The other neural crest pathway extends ventrally alongside the neural tube in the intersomitic space. When neural crest cells were grafted to a ventral position, between the notochord and dorsal aorta, in this intersomitic pathway at the axial level of the last somite, the grafted cells migrate rapidly within 2 hr in two directions: (1) dorsally, in the intersomitic space, until the grafted cells contact the ventrally moving stream of the host neural crest and (2) laterally, along the dorsal aorta and endoderm. All of the above experiments indicate that neither a preestablished chemotactic nor adhesive (haptotactic) gradient exists in the embryo since the grafted neural crest cells will move in the reverse direction along these pathways toward the dorsal neural tube. For the same reason, these experiments also show that dispersal of the neural crest is not directed passively by other environmental controls, since the cells can clearly move counter to their usual pathway and against such putative passive mechanisms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Retinoic acid-binding protein, rhombomeres and the neural crest.   总被引:3,自引:0,他引:3  
We have investigated by immunocytochemistry the spatial and temporal distribution of cellular retinoic acid-binding protein (CRABP) in the developing nervous system of the chick embryo in order to answer two specific questions: do neural crest cells contain CRABP and where and when do CRABP-positive neuroblasts first arise in the neural tube? With regard to the neural crest, we have compared CRABP staining with HNK-1 staining (a marker of migrating neural crest) and found that they do indeed co-localise, but cephalic and trunk crest behave slightly differently. In the cephalic region in tissues such as the frontonasal mass and branchial arches, HNK-1 immunoreactivity is intense at early stages, but it disappears as CRABP immunoreactivity appears. Thus the two staining patterns do not overlap, but are complementary. In the trunk, HNK-1 and CRABP stain the same cell populations at the same time, such as those migrating through the anterior halves of the somites. In the neural tube, CRABP-positive neuroblasts first appear in the rhombencephalon just after the neural folds close and then a particular pattern of immunoreactivity appears within the rhombomeres of the hindbrain. Labelled cells are present in the future spinal cord, the posterior rhombencephalon up to rhombomere 6 and in rhombomere 4 thus producing a single stripe pattern. This pattern is dynamic and gradually changes as anterior rhombomeres begin to label. The similarity of this initial pattern to the arrangement of certain homeobox genes in the mouse stimulated us to examine the expression of the chicken Hox-2.9 gene. We show that at stage 15 the pattern of expression of this gene is closely related to that of CRABP. The relationship between retinoic acid, CRABP and homeobox genes is discussed.  相似文献   

14.
15.
We have tested the hypothesis that developmentally significant cellular subsets are present in the early stages of neural crest ontogenesis. Cultured quail trunk neural crest cells probed with the monoclonal antibodies HNK-1 and R24 exhibited heterogeneous staining patterns. Fluorescence-activated cell sorting was used to isolate the HNK-1+ and HNK-1- cell populations at 2 days in vitro. When these cell populations were cultured, the HNK-1+ sorted cells differentiated into melanocytes, unpigmented cells, and numerous catecholamine-positive (CA+) cells. In contrast, the HNK-1- sorted cells gave rise to melanocytes and unpigmented cells, but few, if any, CA+ cells. When neural crest cells at 2 days in vitro were labeled with R24 and sorted, both the R24+ the R24- sorted cell populations produced numerous CA+ cell, melanocytes, and unpigmented cells. These results provide evidence for the existence of developmental preferences in some subsets of neural crest cells early in embryogenesis.  相似文献   

16.
An attempt was made to culture neural crest cells of the turtle embryo in vitro. Trunk neural tubes from the St. 9/10 embryos were explanted in culture dishes. The developmental potency of the turtle neural crest cells in vitro was shown to be essentially similar to that of avian neural crest cells, although they seem to be more sensitive to melanocyte-stimulating hormone (MSH) stimulation. We describe conditions under which explanted neural tube gives rise to neural crest cells that differentiate into neuronal cells and melanocytes. The potency of melanocyte differentiation was, found to vary according to the concentration of fetal bovine serum (FBS, from 5 to 20%). Melanization of neural crest cells cultured in the medium containing FBS and α-MSH was more extensive than those cultured with FBS alone, combinations of FBS and chick embryo extract, or turtle embryo extract. These culture conditions seem to be useful for the study of the developmental potency of the neural crest cells as well as for investigating local environmental factors.  相似文献   

17.
18.
Previously, we found that interactions between neural and nonneural ectoderm can generate neural crest cells, with both the ectodermal and the neuroepithelial cells contributing to induced population (M. A. J. Selleck and M. Bronner-Fraser, 1995, Development 121, 525-538). To further characterize the ability of ectodermal cells to form neural crest, we have challenged their normal fate by transplanting them into the neural tube. To ensure that the ectoderm was from nonneural regions, we utilized extraembryonic ectoderm (the proamnion) and transplanted it into the presumptive midbrain of 1. 5-day-old chick embryos. We observed that the grafted ectoderm has the capacity to adopt a neural crest fate, responding within a few hours of surgery by turning on neural crest markers HNK-1 and Slug. However, the competence of the ectoderm to respond to neural crest-inducing signals is time limited, declining rapidly in donors older than the 10-somite stage. Similarly, the inductive capacity of the host midbrain declines in a time-dependent fashion. Our results show that extraembryonic ectoderm has the capacity to form neural crest cells given proper inducing signals, expressing both morphological and molecular markers characteristic of neural crest cells.  相似文献   

19.
20.
Expression of the HNK-1/NC-1 epitope in early vertebrate neurogenesis   总被引:4,自引:0,他引:4  
Summary A family of glycoconjugates has recently been shown to share a common carbohydrate epitope recognized by the mouse monoclonal antibody HNK-1. The specificity of HNK-1 was found to be similar to that of another monoclonal antibody, NC-1. These two IgM monoclonal antibodies were raised after immunization of mice with a human T-cell line and avian neural crest-derived ganglia, respectively. The antigens recognized by these antibodies include the myelin-associated glycoprotein, MAG, a glycolipid of defined structure, and a set of molecules involved in cell adhesion. The timing and pattern of appearance of these antigens are distinct. Moreover, the epitope may be absent on an antigen at a given stage or in a given tissue. Therefore, although the molecules able to carry the NC-1/ HNK-1 epitope are numerous and expressed in various tissues, the use of the monoclonal antibodies on tissue sections has proven adequate for following the migration of avian neural crest cells, the major cell lineage recognized by NC-1 and HNK-1 during early embryogenesis. Analogies in several other species have been found on the basis of HNK-1 reactivity. In this study we show that NC-1 and HNK-1 can be used successfully to label migrating neural crest cells in dog, pig and human. On the other hand, the NC-l/HNK-1 epitope was not present on migrating crest cells in amphibians or mice and was found only transiently on the neural crest of rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号