首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid multiplexed fingerprinting method has been developed for bacterial artificial chromosome (BAC) contig assembly. Defined subsets of BAC DNA fragments that result from digestion by three paired restriction endonucleases are labeled with unique fluorescent F-ddATP for each subset. Lists of the labeled fragment size are generated by an ABI 377 DNA sequencer and the GeneScan analysis software and then processed by an assembly program, FPC (Fingerprinted Contigs), to produce contig maps. Data obtained from the multiplexed labeling permit detection of smaller overlaps than is observed when data from a single double-digest are analyzed. The method has been tested on 98 BACs from chromosome 22 regions where large-scale sequencing is under way and also through simulation, using randomly generated BAC clones derived from existing DNA sequence data. In each case, contig assembly results demonstrated the advantages of multiplexed fingerprinting.  相似文献   

2.
3.
The Type IIS restriction endonuclease MnlI recognizes the non-palindromic nucleotide sequence 5'-CCTC(N)7/6 downward arrow and cleaves DNA strands as indicated by the arrow. The genes encoding MnlI restriction-modification system were cloned and sequenced. It comprises N6-methyladenine and C5-methylcytosine methyltransferases and the restriction endonuclease. Biochemical studies revealed that MnlI restriction endonuclease cleaves double- and single-stranded DNA, and that it prefers different metal ions for hydrolysis of these substrates. Mg2+ ions were shown to be required for the specific cleavage of double-stranded DNA, whereas Ni2+ and some other transition metal ions were preferred for nonspecific cleavage of single-stranded DNA. The C-terminal part of MnlI restriction endonuclease revealed an intriguing similarity with the H-N-H type nucleolytic domain of bacterial toxins, Colicin E7 and Colicin E9. Alanine replacements in the conserved sequence motif 306Rx3ExHHx14Nx8H greatly reduced specific activity of MnlI, and some mutations even completely inactivated the enzyme. However, none of these mutations had effect on MnlI binding to the specific DNA, and on its oligomerisation state as well. We interpret the presented experimental evidence as a suggestion that the motif 306Rx3ExHHx14Nx8H represents the active site of MnlI. Consequentially, MnlI seems to be the member of Type IIS with the active site of the H-N-H type.  相似文献   

4.
火鸡疱疹病毒细菌人工染色体的构建   总被引:1,自引:0,他引:1  
火鸡疱疹病毒(HVT)为一种-疱疹病毒,因其与马立克氏病病毒(MDV)抗原相关性而被广泛用作预防马立克氏病(MD)的活疫苗.[目的]本研究的目的是构建HVT全基因组感染性细菌人工染色体(BAC).[方法]利用Eco-gpt(黄嘌呤鸟嘌呤磷酸核糖转移酶)基因和BAC载体pBeloBAC11的基本功能序列,构建重组病毒转移载体Pgab-gpt-BAC11.通过将Pgab-gpt-BAC11与HVT感染细胞总DNA共转染原代鸡胚成纤维细胞(CEF),待出现病毒噬斑后,利用霉酚酸(MPA)阻断核酸代谢途径,经过筛选获得纯化的重组病毒purified-Rhvt.提取purified-Rhvt感染细胞总DNA电转化大肠杆菌DH10B感受态细胞,在氯霉素抗性平板上筛选阳性克隆,并用酶切和PCR方法对其进行鉴定.随机选取BAC克隆提取BAC DNA转染次代CEF,完成HVT重组病毒的拯救.[结果]经过6轮筛选后获得纯化的重组病毒,并筛选到25个BAC分子克隆化病毒.其中BAC6、BAC8和BAC10再次启动病毒感染,产生与野生型HVT感染CEF相似的病毒噬斑形态,说明已经获得拯救出的HVT重组病毒.[结论]本研究构建了HVT全基因组感染性细菌人工染色体,建立了HVT反向遗传操作技术平台.  相似文献   

5.
Fluorescent-based high-information-content fingerprinting (HICF) techniques have recently been developed for physical mapping. These techniques make use of automated capillary DNA sequencing instruments to enable both high-resolution and high-throughput fingerprinting. In this article, we report the construction of a whole-genome HICF FPC map for maize (Zea mays subsp. mays cv B73), using a variant of HICF in which a type IIS restriction enzyme is used to generate the fluorescently labeled fragments. The HICF maize map was constructed from the same three maize bacterial artificial chromosome libraries as previously used for the whole-genome agarose FPC map, providing a unique opportunity for direct comparison of the agarose and HICF methods; as a result, it was found that HICF has substantially greater sensitivity in forming contigs. An improved assembly procedure is also described that uses automatic end-merging of contigs to reduce the effects of contamination and repetitive bands. Several new features in FPC v7.2 are presented, including shared-memory multiprocessing, which allows dramatically faster assemblies, and automatic end-merging, which permits more accurate assemblies. It is further shown that sequenced clones may be digested in silico and located accurately on the HICF assembly, despite size deviations that prevent the precise prediction of experimental fingerprints. Finally, repetitive bands are isolated, and their effect on the assembly is studied.  相似文献   

6.
To determine the extent to which protein folding rates and free energy landscapes have been shaped by natural selection, we have examined the folding kinetics of five proteins generated using computational design methods and, hence, never exposed to natural selection. Four of these proteins are complete computer-generated redesigns of naturally occurring structures and the fifth protein, called Top7, has a computer-generated fold not yet observed in nature. We find that three of the four redesigned proteins fold much faster than their naturally occurring counterparts. While natural selection thus does not appear to operate on protein folding rates, the majority of the designed proteins unfold considerably faster than their naturally occurring counterparts, suggesting possible selection for a high free energy barrier to unfolding. In contrast to almost all naturally occurring proteins of less than 100 residues but consistent with simple computational models, the folding energy landscape for Top7 appears to be quite complex, suggesting the smooth energy landscapes and highly cooperative folding transitions observed for small naturally occurring proteins may also reflect the workings of natural selection.  相似文献   

7.
We developed a technique to improve the efficiency of producing TAA repeat microsatellite markers linked to interspecific conserved genes. Template DNA was prepared from cultures derived from single bacterial artificial chromosome (BAC) colonies using a simple alkaline lysis miniprep. The presence of conserved genes in each BAC clone was verified by sequencing with gene-specific primers. The BAC templates were directly sequenced using short tandem repeat-anchored primers (STRAPs), consisting of TAA repeats with one or two unique 3' terminal bases. At least one STRAP provided sufficient 3' flanking sequence from each clone for the design of a BAC-specific primer. The BAC-specific primer was used to sequence back through the tandem repeat and obtain 5' flanking sequence, and a second BAC-specific primer was designed for microsatellite genotype analysis. This technique quickly provided microsatellite markers with an average of 15 tandem repeats for the BAC clones tested. The identification of polymorphic microsatellite loci in these clones permits the identification of alleles linked to candidate genes, placement of conserved genes on genetic linkage maps, and integration of linkage and physical maps.  相似文献   

8.
Two of thirteen bacillar strains isolated from the inner tissues of cotton plants were found to produce type II restriction endonucleases. The investigation of the site specificity of these enzymes showed that they are AsuI and Eco31I isoschizomers.  相似文献   

9.
Scaringe WA  Liao D  Liu Q  Sommer SS 《BioTechniques》1999,27(6):1188-90, 1192-4, 1196 passim
REF Select, expert system software, has been developed to assist in the selection of optimal restriction endonucleases for restriction endonuclease fingerprinting (REF), a method for rapid and sensitive mutation screening of long DNA segments (1-2 kb). The REF method typically involves six separate digestions with up to two restriction endnonucleases used in each digestion. If done manually, performing a comprehensive review of the large number of possible sets of restriction endonucleases that could be used (over 10(19) in the example presented here) and making an optimal choice is not feasible. Furthermore, the typical nonoptimal manual selection takes approximately 8 h by someone experienced with REF. REF Select enables a comprehensive review of the possible sets and a consistent, objective and fast selection of an optimal set by using a two-step strategy: the selection of sets that meet specific constraints, which is followed by a ranking of those sets by an optimality score. Based on our experience with REF, we chose default selection and ranking parameters to help the user get started quickly. These parameters form a knowledge base that can be customized and then saved by the user. In conclusion, REF Select facilitates the general application of REF by serving as an expert system for the selection of optimal restriction endonucleases. We demonstrated REF Select using an example segment from the human p53 gene.  相似文献   

10.
Isolation of cDNA clones using yeast artificial chromosome probes.   总被引:13,自引:3,他引:13       下载免费PDF全文
The cloning of large DNA fragments of hundreds of kilobases in Yeast artificial chromosomes, has simplified the analysis of regions of the genome previously cloned by cosmid walking. The mapping of expressed sequences within cosmid contigs has relied on the association of genes with sequence motifs defined by rare-cutting endonucleases, and the identification of sequence conservation between species. We reasoned that if the contribution of repetitive sequences to filter hybridizations could be minimised, then the use of large cloned DNAs as hybridisation probes to screen cDNA libraries would greatly simplify the characterisation of hitherto unidentified genes. In this paper we demonstrate the use of this approach by using a YAC, containing 180 kb of human genomic DNA including the aldose reductase gene, as a probe to isolate an aldose reductase cDNA from a lambda gt11 human foetal liver cDNA library.  相似文献   

11.
We have developed an automated, high-throughput fingerprinting technique for large genomic DNA fragments suitable for the construction of physical maps of large genomes. In the technique described here, BAC DNA is isolated in a 96-well plate format and simultaneously digested with four 6-bp-recognizing restriction endonucleases that generate 3' recessed ends and one 4-bp-recognizing restriction endonuclease that generates a blunt end. Each of the four recessed 3' ends is labeled with a different fluorescent dye, and restriction fragments are sized on a capillary DNA analyzer. The resulting fingerprints are edited with a fingerprint-editing computer program and contigs are assembled with the FPC computer program. The technique was evaluated by repeated fingerprinting of several BACs included as controls in plates during routine fingerprinting of a BAC library and by reconstruction of contigs of rice BAC clones with known positions on rice chromosome 10.  相似文献   

12.
More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of configuration at the phosphorus. The products of the reaction are DNA fragments with a 3'-OH and a 5'-phosphate.  相似文献   

13.
A simple technique is proposed for detection of bacterial restriction endonucleases. Analysis is performed directly in the cells from colonies cultivated on Petri dishes. The cells collected with an inoculation loop are treated with lysozyme and Triton X-100. After centrifugation the supernatant is tested for endonuclease activity. The technique enables up to 100 colonies to be tested for 3-4 h.  相似文献   

14.
A new Type IIS restriction endonuclease was identified, partially purified and characterized from a Bacillus cereus subsp. fluorescens strain. The enzyme recognizes the nonpalindromic sequence ACGGC and cleaves at a distance from it. The cleavage appears to occur with a +/- 1 basepair uncertainty. Thus the cleavage and recognition site is as shown below: ACGGC(N)11-13 TGCCG(N)12-14.  相似文献   

15.
The availability of bacterial artificial chromosome (BAC) offers a good genomic platform for a targeted integration of an exogenous gene by a homologous recombination system in Escherichia coli . In combination with microinjection technology, this system allows for the analysis of various aspects of biological phenomena occurring in vivo using Japanese medaka fish ( Oryzias latipes ). Here we describe a streamlined procedure for selecting BAC clones based on the medaka University of Tokyo genome browser (UTGB), followed by rapid modification with enhanced green fluorescent protein (EGFP) or DsRed fragments for transgenic analysis in medaka. Experimental procedures for BAC DNA preparation, microinjection of medaka embryos and screening of resulting transgenic medaka carrying EGFP/DsRed modified BAC clones are also described.  相似文献   

16.
17.
We describe the generation of transgenic mouse lines expressing Cre recombinase in epithelial cells of the lactating mammary gland. As an expression vector, we used a P1-derived bacterial artificial chromosome (PAC) which harbors the gene for the secretory milk protein, whey acidic protein (Wap). Using homologous recombination in E. coli, the PAC was modified to carry the improved coding sequence of Cre recombinase (iCre). Transgenic lines carrying the WAPiCre PAC express Cre recombinase efficiently in the majority of mammary epithelial cells upon lactation. Of only four transgenic lines produced, three express Cre recombinase to a high efficiency. LoxP-flanked DNA sequences are recombined in virtually all epithelial cells of WAPiCre transgenic mice at lactation day 3.  相似文献   

18.
Chromosome identification using Chinese hamster ovary (CHO) genomic bacterial artificial chromosome (BAC) clones has the potential to contribute to the analysis and understanding of chromosomal instability of CHO cell lines and to improve our understanding of chromosome organization during the establishment of recombinant CHO cells. Fluorescence in situ hybridization imaging using BAC clones as probes (BAC-FISH) can provide valuable information for the identification of chromosomes. In this study, we identified chromosomes and analyzed the chromosome rearrangement in CHO cells using BAC-FISH methods.  相似文献   

19.
J Song  F Dong  J W Lilly  R M Stupar  J Jiang 《Génome》2001,44(3):463-469
The cloning and propagation of large DNA fragments as bacterial artificial chromosomes (BACs) has become a valuable technique in genome research. BAC clones are highly stable in the host, Escherichia coli, a major advantage over yeast artificial chromosomes (YACs) in which recombination-induced instability is a major drawback. Here we report that BAC clones containing tandemly repeated DNA elements are not stable and can undergo drastic deletions during routine library maintenance and DNA preparation. Instability was observed in three BAC clones from sorghum, rice, and potato, each containing distinct tandem repeats. As many as 46% and 74% of the single colonies derived from a rice BAC clone containing 5S ribosomal RNA genes had insert deletions after 24 and 120 h of growth, respectively. We also demonstrated that BAC insert rearrangement can occur in the early stage of library construction and duplication. Thus, a minimum growth approach may not avoid the instability problem of such clones. The impact of BAC instability on genome research is discussed.  相似文献   

20.
Apomixis, asexual reproduction through seed, is widespread among angiosperm families. Gametophytic apomixis in Pennisetum squamulatum and Cenchrus ciliaris is controlled by the apospory-specific genomic region (ASGR), which is highly conserved and macrosyntenic between these species. Thirty-two ASGR bacterial artificial chromosomes (BACs) isolated from both species and one ASGR-recombining BAC from P. squamulatum, which together cover approximately 2.7 Mb of DNA, were used to investigate the genomic structure of this region. Phrap assembly of 4,521 high-quality reads generated 1,341 contiguous sequences (contigs; 730 from the ASGR and 30 from the ASGR-recombining BAC in P. squamulatum, plus 580 from the C. ciliaris ASGR). Contigs containing putative protein-coding regions unrelated to transposable elements were identified based on protein similarity after Basic Local Alignment Search Tool X analysis. These putative coding regions were further analyzed in silico with reference to the rice (Oryza sativa) and sorghum (Sorghum bicolor) genomes using the resources at Gramene (www.gramene.org) and Phytozome (www.phytozome.net) and by hybridization against sorghum BAC filters. The ASGR sequences reveal that the ASGR (1) contains both gene-rich and gene-poor segments, (2) contains several genes that may play a role in apomictic development, (3) has many classes of transposable elements, and (4) does not exhibit large-scale synteny with either rice or sorghum genomes but does contain multiple regions of microsynteny with these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号