首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to find out whether daily LH secretion in ewes may be modulated by melatonin during the breeding season, when the secretion of both hormones is raised. Patterns of plasma LH were determined in luteal-phase ewes infused intracerebroventricularly (icv.) with Ringer-Locke solution (control) and with melatonin (100 microg/100 microl/h). Response in LH secretion to melatonin was also defined in ovariectomized (OVX) ewes without and after estradiol treatment (OVX+E2). Basal LH concentrations by themselves did not differ significantly before, during and after both control and melatonin infusions in intact, luteal-phase ewes. However, single significant (P<0.05) increases in LH concentration were noted during the early dark phase in the control and 1h after start of infusion in melatonin treated ewes. In both OVX and OVX+E2 ewes, melatonin decreased significantly (P<0.01, P<0.05, respectively) mean plasma LH concentrations as compared to the levels noted before the infusions. In OVX+E2 ewes, a single significant (P<0.05) increase in LH occurred 1h after start of melatonin treatment, similarly as in luteal-phase ewes. No significant differences in the frequencies of LH pulses before, during and after melatonin infusion were found in all treatments groups. In conclusion, melatonin may exert a modulatory effect on daily LH secretion in ewes during the breeding season, stimulating the release of this gonadotropin in the presence of estradiol feedback and inhibiting it during steroid deprivation. Thus, estradiol seems to be positively linked with the action of melatonin on reproductive activity in ewes.  相似文献   

2.
Phytoestrogens, plant derived estrogen like-compounds exert numerous effects on the reproductive functions of animals. The present study was designed to demonstrate if exogenous genistein infused during the breeding season into the third ventricle of the brain of ovariectomized ewes could affect the secretory activity of the GnRH/LH axis. Two-year-old ovariectomized ewes (n=8) were infused with vehicle (control, n=3) or genistein (10 microg/100 microl/h, n=5) into the third ventricle. The infusions were done from 10.00 to 14.00 h and blood samples collection was performed this day up to 20.00 h and next day from 8.00 to 10.00 h. The animals were slaughtered, thereafter. Immunoreactive (IR) GnRH neurons in the hypothalamus and LH cells in the adenohypophysis were localized by immunohistochemistry. Messenger RNA analyses were performed by nonisotope in situ hybridization using sense and anti-sense riboprobes produced from beta subunits of LH cDNA clones. Plasma LH concentrations were measured by radioimmunoassay. Immunohistochemical analysis revealed that genistein infusion affected the morphology of GnRH neurons evoking a visualization of long axons in the GnRH perikarya and visibly diminished IR GnRH stores in the median eminence. The number of IR LH cells and IR material stored in the adenohypophyses increased in genistein-infused animals, which was confirmed by statistical analysis (P<0.001). The in situ hybridization analyses showed in these ewes the increase of mRNA LHbeta hybridization signal. The changes in LH release in response to genistein infusion had a biphasic character: it decreased within 6 h after infusion and increased 24 h later. Mean concentration of LH and amplitude of pulses measured from the beginning of infusion up to end of the experiment were significantly higher (P<0.05) in genistein-infused ewes compared to vehicle-treatment. In conclusion, our data show that genistein, a phytoestrogen, may effectively modulate GnRH and LH secretion in OVX ewes by acting directly on the CNS. The biphasic character of the LH response is similar to that of estradiol during the breeding season in the ewes.  相似文献   

3.
The levels of plasma LH and FSH were measured in serial blood samples taken at 15-min intervals for 6 h from ewes that had remained fertile after grazing oestrogenic pasture (clover-fertile ewes), from ewes that were permanently affected by clover disease (clover-infertile ewes) and from normal ewes. Two flocks of ewes from different locations were studied. In flock 1, tonic LH secretion (total area under the curve of LH concentration versus time, 1 area unit = 1 ng ml-1 x 1 h) was significantly (P < 0.05) greater in clover-infertile ewes (10.4 area units) during anoestrus than in ewes that had remained fertile after prolonged grazing of oestrogenic clover (5.4 area units). Tonic LH and FSH secretions during the bleeding season and FSH secretion during anoestrus were not significantly different. In flock 2, LH levels during the breeding season were significantly (P < 0.05) elevated in clover-infertile ewes (10.9 area units) compared to normal ewes (5.4 area units) that had never grazed oestrogenic clover. LH secretion in clover-infertile ewes (7.8 area units) was intermediate to that found in infertile and control ewes. Concentrations of FSH, progesterone and ovarian vein oestradiol-17 beta (E2) during the breeding season were similar in the three groups. In another experiment, the positive feedback release of LH following administration of E2 (12.5, 25 or 50 micrograms per ewe) was measured in anoestrous ewes of flock 2. Significantly (P < 0.01) more clover-infertile ewes demonstrated a positive feedback effect than control ewes when given 12.5 micrograms E2 but not when given higher doses. The elevation of LH secretion in permanently affected clover-infertile ewes is inconsistent with the hypothesis that the hypothalamo-pituitary axis of these ewes is less responsive to the negative feedback effect of oestrogen. Furthermore, the patency of the positive feedback loop is consistent with the ability to ovulate.  相似文献   

4.
During 12 sampling days before ovariectomy the mean plasma FSH but not LH concentrations in FF ewes were higher (P less than 0.01) than those in ++ ewes (16 ewes/genotype). After ovariectomy increases in the concentrations of FSH and LH were noted for ewes of both genotypes within 3-4 h and the rates of increase of FSH and LH were 0.18 ng ml-1 h-1 and 0.09 ng ml-1 h-1 respectively for the first 15 h. From Days 1 to 12 after ovariectomy, the overall mean +/- s.e.m. concentrations for FSH in the FF and ++ ewes were 8.1 +/- 0.6 and 7.1 +/- 0.4 ng/ml respectively and for LH they were 2.7 +/- 0.3 and 2.1 +/- 0.2 ng/ml: these differences were not statistically significant (P = 0.09 for both FSH and LH; Student's t test). However, when the frequencies of high FSH or LH values after ovariectomy were compared with respect to genotype over time, significant F gene-specific differences were noted (P less than 0.01 for both FSH and LH; median test). In Exp. 2 another 21 ewes/genotype were blood sampled every 2nd day from Days 2 to 60 after ovariectomy and the plasma concentrations of FSH and LH were more frequently higher in FF than in ++ ewes (P less than 0.01 for FSH and LH). The F gene-specific differences in LH concentration, observed at 21-36 days after ovariectomy were due to higher mean LH amplitudes (P less than 0.025) but not LH peak frequency in FF than in ++ ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In the deep anoestrous period (June), five intact ewes and five ovariectomized ewes received 50 ug synthetic gonadotrophin-releasing hormone (GnRH). In the mid-breeding season (October), the GnRH administrations were repeated in five intact and four ovariectomized ewes; the former were in the luteal phase of the cycle. Blood samples were collected every 30 sec for 15 min, then at 15-min intervals. Release of luteinizing hormone (LH) occurred as soon as the second minute after injection in all ewes. This early response was earlier and more abrupt in the ovariectomized ewes than in the intact animals. In a second experiment three intact ewes that were in deep anoestrus received 50 ug GnRH followed 5 h 20 min later by a second identical injection. Another three intact ewes in deep anoestrus received two injections of 1 ug GnRH. Blood samples were taken every 15 sec for 15 min, then every 20 min until the next injection, and for a further 5 h after the second injection. This regimen was repeated in mid-breeding season during the luteal phase. There was again a very early release of LH; the magnitude of response was similar after the first injection of either 50 ug or 1 ug GnRH to intact ewes either in the breeding season or during deep anoestrus. However, a greater early release of LH was obtained at the lower dose only after the second injection of GnRH. Apart from this exception, the similar early release of LH occurred in spite of different amounts of LH released thereafter in response to the two doses of GnRH. It is suggested that the early response to GnRH consists of LH stored in a "readily releasable" pool in the pituitary, whereas the main release of LH may be a result of increased synthesis and/or release of a more stable pool.  相似文献   

6.
Whether estradiol targets a subpopulation of gonadotrope cells was investigated in this study. Ovariectomized ewes (OVX) or OVX ewes immunized against GnRH and treated with hourly pulses of GnRH analogue (OVX-IMG) were killed at 6, 12, 16, and 24 h after administration of 50 microg of 17beta-estradiol (E(2)). Control ewes received no E(2) treatment. In OVX or OVX-IMG ewes killed 6 h after E(2) injection, a decrease in gonadotropin plasma levels was observed compared with non-E(2)-treated ewes. In contrast, a surge in gonadotropin plasma concentrations occurred in ewes killed 16 h after injection. The percentage of total immunoreactive gonadotrope cells among the pituitary cells was lower in E(2)-treated ewes compared with nontreated animals. The proportion of monohormonal LH cells was constant throughout the experiment, except at the surge peak, where it was enhanced. In the OVX ewes, the proportion of bihormonal LH/FSH cells was lower in the E(2)-treated ewes compared to the nontreated ewes (P: < 0.001), with a more pronounced decrease 16 h after E(2) injection. A slight increase occurred 12 h after E(2) injection compared with 6 h after injection (P: < 0.05). A similar pattern was observed in the OVX-IMG ewes, except at 12 h after E(2) injection, when no increase occurred. In both OVX and OVX-IMG ewes, injection of E(2) decreased FSHbeta mRNA expression but did not alter the relative levels of LHbeta mRNA. These data suggest that the negative feedback of E(2) on LH and FSH secretion mainly targets the bihormonal cells and occurs, at least in part, directly at the pituitary level. During the gonadotropin surge, the sustained FSH release from the bihormonal cells would induce a switch from bihormonal cells to monohormonal LH cells by depleting these cells of FSH.  相似文献   

7.
In June, 16 mature ewes were ovariectomized and allocated to four groups: 1, saline; 2, naloxone; 3, progesterone implant plus naloxone; 4, oestrogen implant plus naloxone. Steroids were implanted at the time of ovariectomy. At 5 days after ovariectomy, the animals were intravenously infused with saline for 8 h and naloxone (50 mg/h) in saline for 8 h the following day. Three intact ewes were given naloxone in a similar way. During infusions and for 8 h on the day after naloxone, jugular venous blood samples were taken every 15 min and assayed for LH. Naloxone resulted in significant increases in mean LH concentration (P less than 0.01), LH episode frequency and episode height (P less than 0.05) in Group 3 ewes, but was without effect in any other group. These results provide evidence that the progesterone status of the ewe affects its response to naloxone, that progesterone negative feedback on LH release may be mediated by an opioid system, and that increased oestradiol negative feedback during seasonal anoestrus is unlikely to work via increased opioid inhibition of LH.  相似文献   

8.
This study tested a hypothesis that an acute enhancement of prolactin concentration within the central nervous system (CNS) would affect the LH secretion in ewes, depending on the level of endogenous estrogens in the organism. A 3-h long intracerebroventricular (icv.) infusion of ovine prolactin was made in late follicular-phase ewes, experiment 1, and in ovariectomized (OVX) ewes (experiment 2). No significant differences were found in mean LH concentrations and LH peak number before, during and after prolactin administration (50 microg/100 microl/h) in intact cyclic ewes. No diurnal rhythm in LH was detected in prolactin-infused ewes. From the two doses of prolactin used in OVX ewes (25 and 50 microg/100 microl/h) only the lower dose suppressed significantly the mean plasma LH concentration after the infusion, compared to those noted before (P < 0.01) and during (P < 0.001) prolactin treatment. Prolactin had no effect on LH pulse frequency in OVX ewes, however, a tendency to decrease in LH peak number was observed after administration of a lower dose. Plasma prolactin levels decreased significantly (P < 0.01 and P < 0.001) after the icv. infusion in all groups, indicating a high degree of effectiveness for exogenous prolactin at the level of the CNS.  相似文献   

9.
Serial blood sampling before and after exposing four anovular Corriedale ewes to a group of rams and estrous ewes during the non-breeding season revealed a pattern of LH secretion similar to that previously observed in Merinos. Mean LH values doubled (P<0.001) from 0.24+/-0.06 microgL(-1) (mean+/-s.e.m.) before to 0.55+/-0.05 microgL(-1) after 2h of visual, auditory, and odor exposure to rams and estrous ewes in an indoor facility. A non-significant (P<0.17) increase of LH pulses per hour was also observed (0.7+/-0.3 pulses per hour before compared with 1.3+/-0.3 during stimulation). All four ewes had recently formed corpora lutea by five days after stimulation. Results are consistent with the pattern of sudden increase and sustained release of LH observed in other sheep breeds, particularly the Merino.  相似文献   

10.
W D Currie  N C Rawlings 《Life sciences》1987,41(10):1207-1214
Suffolk x whiteface ewes were infused with 0.5 mg/kg/hr naloxone hydrochloride (NAL) for 6 hrs during the early, mid and late luteal and early follicular phases of the estrous cycle. Basal serum luteinizing hormone (LH) concentration was increased by NAL during each trial in the luteal phase and LH pulse amplitude was proportionately increased by 158%, 164% and 350% during the early luteal, mid luteal and early follicular phases, respectively. The apparent NAL induced increase (92%) in LH pulse amplitude during the late luteal phase was not significant. NAL only affected LH pulse frequency during the early follicular phase, when it was decreased. Mean serum follicle stimulating hormone (FSH) concentration was not affected by NAL. The results of this study indicate that endogenous opioid peptides (EOPs) may partially mediate the suppressive influence of estradiol-17 beta (E2) on LH pulse amplitude and also the stimulatory effect of E2 on LH pulse frequency in the early follicular phase. The data may suggest that NAL enhances the amplitude of pulses of gonadotropin releasing hormone (GnRH) by counteracting E2 inhibitory effects on LH release at the level of the pituitary. Alternately, some component of E2 feedback may be an EOP mediated component at the level of the hypothalamus.  相似文献   

11.
The effect of 2-hydroxy-5-nitrobenzyl bromide on the biological activity of a preparation of pure porcine LH and FSH-releasing hormone (LH-RH/FSH-RH) was reinvestigated. Since this treatment as well as performic acid and incubation with anhydrous trifluoroacetic acid, caused a complete inactivation of LH-RH/FSH-RH, tryptophan residue is thought to be essential for the biological activity of this polypeptide.  相似文献   

12.
Concentrations of LH and FSH were measured in blood samples collected from the jugular vein at 20-min intervals for 7 h (09:00-16:00 h) on Days 60, 80, 100 and 120 of pregnancy in 5 intact ewes and 5 from which the CL had been excised on Day 70. In the 5 intact ewes, plasma LH concentrations remained low and unchanged between Days 60 and 120. During this period, pulsatile release of LH occurred irregularly and infrequently. Removal of the CL resulted in an increase in the basal values of LH and in the frequency and amplitude of LH pulses. Concentrations of FSH were relatively constant in all stages of pregnancy examined and were similar in both groups of ewes. These results show that (1) LH concentrations are low during the second half of pregnancy; and (2) LH, but not FSH, increases after CL excision, presumably by removing some luteal factor inhibitor of LH secretion.  相似文献   

13.
The effects of the gonadotrophin-releasing hormone, synthetic decapeptide luteinizing hormone/follicle stimulating hormone-releasing hormone (LH/FSH-RH), have been studied in 18 normal men and five women in the follicular phase of their menstrual cycle. Rapid and dose-dependent (25 to 100 μg) increases in serum immunoreactive LH were seen, which reached a peak 20 to 30 minutes after a rapid intravenous injection. Similar but much smaller increases in serum immunoreactive FSH were seen. These conclusions have been validated by using two different immunoassay systems for each hormone. The LH/FSH-RH therefore causes both LH and FSH release in man as in animals but does not affect growth hormone, thyrotrophin, or ACTH. The gonadotrophin responses were the same in the women as in the men but were insufficient in the men to cause statistically significant changes in the serum levels of the gonadal steroid hormones, testosterone or oestradiol, or in their precursors 17 α-hydroxyprogesterone or progesterone. In the women, however, there was a rise in oestradiol after the 100-μg doses. The use of LH/FSH-RH will provide an important test to define the level of the lesion in hypogonadal patients and also should be valuable in the treatment of some types of male and female infertility. A simple and clinically useful LH/FSH-RH test of pituitary function is described (100 μg given intravenously), and the provisional normal responses of LH and FSH at 20 and 60 minutes are given.  相似文献   

14.
The possibility was investigated of using single i.v. injections of a synthetic luteinizing hormone-releasing hormone (LH-RH) to manipulate the reproductive pattern of the ewe.Single i.v. injections of 150 μg synthetic LH-RH were given on Day 12 of the oestrous cycle, during seasonal anoestrus and on Day 16 post-partum in ewes which lambed during the breeding season. Blood samples were obtained at 5-, 10- or 15-minute intervals for 1 hour before and for 3 hours after treatment. Plasma LH concentrations were measured using a specific double antibody radioimmunoassay, the development of which is described. Laparotomy was performed on each animal 2–3 days after treatment.The treatment induced LH peaks in all animals and ovulation in the majority. There was no significant difference between the groups in the LH response. The LH release was, however, much less than that found in untreated ewes sampled every 15 minutes for 18 hours during oestrus.  相似文献   

15.
The purpose of this study was to determine the occurrence of and the regulatory mechanisms involved in priming of the pituitary to GnRH before the preovulatory LH surge in sheep. Experiment 1: Forty-two ewes had progestagen devices removed after 14 days and were assigned to luteal (Lut) or follicular (Foll) groups. Fifteen days later, blood sampling was initiated either immediately or 36 h after induced luteolysis in groups Lut and Foll, respectively. After 4 h, ewes were administered either saline (n = 5) or 250 ng (n = 8) or 10 microg (n = 8) of GnRH. Five ewes per treatment group were killed 1 h later, while remaining animals were blood sampled for a further 7 h. Experiment 2: Eighteen ewes were allocated to Lut and Foll groups (described above). Blood samples were collected from 2 h before GnRH (10 microg) treatment until 7 h after. Despite up-regulated GnRH-R mRNA levels in Foll ewes, pituitary content and plasma levels of LH and LHbeta mRNA levels were similar between groups. Mean FSHbeta mRNA and plasma FSH levels were elevated in Lut ewes but declined after GnRH treatment. Inversely, plasma estradiol and inhibin-A concentrations were higher in Foll ewes and declined after GnRH treatment. Fewer LH(+ve)/secretogranin II(-ve) (SgII(-ve)) granules were present in gonadotropes of Foll ewes, coincident with increased basal LH levels. Fewer smaller sized granules were present after GnRH treatment. In conclusion, there was no evidence of self-priming before onset of the preovulatory LH surge. Constitutive release of LH(+ve)/SgII(-ve) granules may maintain basal LH levels while smaller sized, presumably mature granules may be preferentially released after GnRH stimulation.  相似文献   

16.
A luteinizing hormone/follicle-stimulating hormone-releasing hormone (LH/FSH-RH) test was performed in 70 women with amenorrhoea or anovulatory infertility, or both, and a clomiphene stimulation test was also performed in 24 of these patients. Most patients responded to LH/FSH-RH with significant increases in LH and FSH. In women with gonadal dysgenesis or premature ovarian failure exaggerated responses were observed after LH/FSH-RH and there was no change in high basal LH levels after clomiphene. Patients with absent or impaired responses to LH/FSH-RH failed to respond to clomiphene. All patients with anovulatory menstrual cycles responded to both LH/FSH-RH and clomiphene, while seven out of 13 amenorrhoeic patients with a normal LH/FSH-RH response showed an early LH rise during clomiphene treatment and six were unresponsive. These results suggest a difference between the two groups at hypothalamic level with consequent therapeutic implications.  相似文献   

17.
The characteristics of the induced preovulatory LH discharge were compared in ewes after treatment for 12 days with intravaginal sponge pessaries impregnated with 40 mg Fluorogestone Acetate or with subcutaneous ear implants containing varying quantities of Norgestomet. In Experiment 1, ewes were treated with intravaginal sponges or implants alone. In Experiment 2, ewes received similar treatments and 500 IU pregnant mares' serum gonadotropin (PMSG) i.m. at the time of sponge or implant removal. The duration of the LH discharge and an estimate of the total LH discharged were similar among treatment groups within the same experiment. Overall, the onset of LH release occurred approximately 8 h earlier in ewes treated with implants, whether or not PMSG was used. Use of PMSG, in conjunction with implant or sponge treatments, shortened the mean interval from sponge or implant removal to the onset of LH release from 41 to 28 h and doubled the estimated total LH discharged, compared with treatments using sponges or implants alone.  相似文献   

18.
Synthetic luteinizing hormone/follicle stimulating hormone-releasing hormone (LH/FSH-RH) (50 μg) was given intravenously to six women with oligomenorrhoea and to four women with secondary amenorrhoea. Peripheral venous blood was withdrawn at regular intervals over a 24-hour period. The concentrations of LH, FSH, and oestradiol-17β were determined by radioimmunoassay. In all subjects there was a variable rise in LH (3-16 times the mean basal level): in six a small rise in FSH (two to three times the mean basal level) and in seven a twofold to threefold rise in oestradiol three to eight hours after the rise in gonadotrophins.  相似文献   

19.
The aim of the present study was to estimate the onset of sexual maturity of F(2) lambs born to crossbred ewes (East-Friesian x Black-Head Pleven breeds) x East-Friesian rams based on measurments of plasma FSH, LH and 17beta-estradiol levels during postnatal development. The hormonal levels were measured by radioimmunoassay in blood samples taken from 107 ewe lambs at the age of 0 to 10 days, 1, 2, 3, 4, 5, 5.5, 6 months and at 1 year from anestrous ewes (birth - Day 0). Starting at a baseline concentration during Days 0-10, FSH rose to a peak at Month 2 and declined after Month 3 to levels equivalent to those seen in yearling, sexually mature ewes. Mean LH concentrations rose from baseline to the highest level in samples taken at 5.5 months and stabilized at 6 months to the level seen in yearling ewes. The preovulatory LH peak was recorded in 5.5 month-old lambs. Neither FSH nor LH declined to baseline concentrations in lambs after the initial 10 days of life. 17beta-estradiol fluctuated, showing an initial rise in samples taken between Days 0-10 and Month 2, followed by insignificant variations between different ages and were near to those in yearling ewes. The data suggest that the sexual maturity in lambs is attained at 5.5-6 months of age. The findings allow us to suggest that these crossbred ewes might be fertilized at an earlier age (11-12 months) if they had reached the neccessary body development (body weight: 75-80% of that of adult ewes). They also might be included earlier in estrous synchronization programs in order to give birth to 3 lambs in 2 years.  相似文献   

20.
Ovariectomized ewes were given 2 ml s.c. injections of ovine follicular fluid (oFF) (N = 3) or serum (N = 3) and blood samples were collected each day for 3 days. Follicular fluid caused a significant (P less than 0.005) reduction in FSH within 1 day, but did not affect mean LH values. Two groups of 3 ewes were treated as above but sampled intensively (each 10 min for 6 h) on Days 1 (before treatment) and 4; mean plasma FSH concentration and plasma LH pulse frequency and amplitude were ascertained. Significant (P less than 0.005) reduction of FSH concentration was seen in the oFF-treated ewes. A non-specific reduction in LH pulse amplitude, but not pulse frequency, was noted in the control ewes. This experiment was repeated with 2 groups of 4 ewes that were conditioned to the experimental environment and effects on LH secretion were not observed in the controls given serum. Treatment with oFF caused a 70% reduction (P less than 0.005) in plasma FSH and a small (30%) but significant (P less than 0.005) reduction in mean LH concentrations. The latter was probably associated with a reduction in LH pulse amplitude in 3/4 animals (N.S.) with no change in LH pulse frequency. Treatment with oFF, as in Exp. 1, caused a 95% reduction in FSH values and significant (P less than 0.01) reduction (32%) of LH pulse amplitude in ovariectomized ewes that had been subjected to hypothalamo-pituitary disconnection and in which gonadotrophin secretion was reinstated with pulses of 250 ng GnRH every 2 h. These results suggest that proteins from the sheep follicular fluid, including inhibin, act at the pituitary level to inhibit FSH secretion and may have some effects on LH pulse amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号