首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The habitat association approach has been increasingly used in ecology to resolve problems in wildlife conservation and management. One problem related to habitat association studies is that they are restricted to small geographical areas within a species' range, and thus they are applicable to only a limited set of environmental conditions utilized by the species. In addition, very few studies address why the preference for specific habitat components may be adaptive for the species in question. The objective of this study was to examine how consideration of populations of a species from two dramatically different environments affects the results of habitat association modelling for a ground-nesting passerine, the Rock Bunting Emberiza cia . At a regional scale, a trend to defending breeding habitat patches with relatively higher stone cover was confined to birds from a temperate region in Slovakia. In contrast, in a semi-arid region in southeastern Spain, Rock Buntings preferred to use breeding habitat patches that had relatively higher grass cover. Combining data from both regions, breeding Rock Buntings showed a general pattern of using habitat patches close to hedges, with low bush cover, high ditch density and a steep slope. Whereas regional habitat association models appear to be sensitive to the particularities of the breeding environment, our study suggests that Rock Bunting breeding habitat association is constrained by the adults' tactics to protect themselves against predators. Although the birds prefer to nest in patches of low vegetation, the better to see nearby predators, these patches are ideally close to taller vegetation that can be used to provide cover when evading predators, and they are also of a rugged profile that helps the birds to approach and leave the nest stealthily.  相似文献   

2.
1. Aquatic communities are structured by multiple forces, and identifying the driving factors over multispatial scales is an important research issue. The East Asian monsoon region is globally one of the richest environments in terms of biodiversity, and is undergoing rapid human development, yet the river ecosystems in this region have not been well studied. We applied a hierarchical framework to incorporate regional and local environmental effects on stream macroinvertebrate communities in this region. The knowledge gained is expected to improve the understanding of the importance of spatial scale on regional and local diversity in the East Asian monsoon region. 2. A national data set of benthic macroinvertebrates and environmental variables (geographical, land‐use, hydrological, substratum and physicochemical elements) in Korean rivers was used to determine the habitat preferences of macroinvertebrates. 3. Latitude, proportion of forest coverage, riffle habitat, silt substratum and temperature were the most important determinants for the ordinations of macroinvertebrate communities in each category evaluated by canonical correspondence analysis (CCA). The optimal habitats for stream macroinvertebrates are not the same for all species, and overall community metrics and abundance of sensitive species tended to be lower in open agricultural and urban streams than in forested streams. The sensitivity of mayflies and stoneflies to anthropogenic disturbances implicated them as good indicators to assess the effects of urban and agricultural activities. 4. A partial CCA was used to evaluate the relative importance of macrohabitat and microhabitat variables on community composition at three spatial scales (whole country, the large Han River basin and two small sub‐basins in the lowlands and highlands). The majority of community variation (17–22% for each environmental element) was explained by macrohabitat variables at the regional spatial scale. In contrast, large proportions (15–18%) were explained by microhabitat variables at the local spatial scale. 5. Our findings indicate that the relative importance of habitat scales should be determined by geographical size and that comprehensive understanding of multispatial scale patterns can be important for implementing sound biodiversity conservation programmes.  相似文献   

3.
曹铭昌  刘高焕  徐海根 《生态学报》2011,31(21):6344-6352
生境在鸟类生活史中发挥着重要的作用,关系到鸟类的生存和繁衍。由于鸟类对环境变化的响应发生在等级序列空间尺度上,基于多尺度的研究更能深入刻画鸟类-环境之间关系。以丹顶鹤(Grus japonensis)为研究对象,以其迁徙和越冬的重要地区-黄河三角洲自然保护区为研究区域,应用等级方差分解法和等级划分法,分析丹顶鹤与微生境、斑块、景观尺度因子之间的关系,探求丹顶鹤生境选择的主要影响因素和尺度。等级方差分解结果表明,在第1等级水平,景观尺度因子与微生境、斑块尺度因子之间的联合效应大于独立效应,景观尺度因子的独立效应大于微生境和斑块尺度因子;在第2等级水平,景观尺度上的景观组成因子重要性大于景观结构因子,微生境尺度上的植被和水分因子为重要影响因素。等级划分结果表明,景观尺度上,翅碱蓬滩涂、水体面积大小是主要影响因素;微生境尺度上,植被盖度和水深为主要限制因子;在斑块尺度上,斑块类型对丹顶鹤生境选择最为重要。研究认为,在黄河三角洲自然保护区,景观尺度是影响丹顶鹤生境选择的主要尺度,景观尺度因子通过与微生境和斑块尺度因子的独立和联合作用制约着丹顶鹤在保护区的生境选择和空间分布格局。建议加强对翅碱蓬滩涂、芦苇沼泽、水体等湿地生境的保护和管理,规范和控制保护区内人类活动强度。  相似文献   

4.
Understanding species‐specific habitat selection is essential to identify how natural systems are assembled and maintained, and how emerging natural and anthropogenic disturbances will affect ecosystem function. In the Neotropics, Peter's tent‐roosting bat (Uroderma bilobatum), known to roost in forests, has become abundant in human‐modified areas. To understand how habitat characteristics in both intact forest and human‐modified areas influence the presence and density of U. bilobatum, we characterized habitat use at two scales (macrohabitat and microhabitat) and used logistic and poisson regressions to determine which habitat characteristics best predicted the presence and density of U. bilobatum within each scale. Moreover, we performed a redundancy analysis to determine which habitat scale explained more variation. As these bats are obligate tent roosters, we used tent as a surrogate for bat presence and density. We found that both macrohabitat and microhabitat scales explained variation in presence and density. Characteristics of the microhabitat scale, however, had higher predictive power, revealing that U. bilobatum preferentially inhabits areas with high density of coconut palms. Coconut palms were introduced recently in the Neotropics and are found only in human‐modified areas. Therefore, we hypothesize that U. bilobatum is expanding its range into these areas following the expanded distribution of this exotic plant species.  相似文献   

5.
Recent studies suggest that species distribution models (SDMs) based on fine‐scale climate data may provide markedly different estimates of climate‐change impacts than coarse‐scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse‐scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species endemic to the California Floristic Province of different life forms and range sizes under recent and future climate across a 2000‐fold range of spatial scales (0.008–16 km2). We produced unique current and future climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and 90 m digital elevation models and deriving bioclimatic predictors from them. As climate‐data resolution became coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine‐ and coarse‐scale predictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and species' range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data. We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may have more serious implications than net habitat area when predictive maps form the basis of conservation decision making.  相似文献   

6.
During a study of microhabitat use by gilt darters (Percina evides), we compared two methods for quantifying microhabitat availability in a southern Appalachian stream (USA). The first method used stratified random sampling throughout the site and the second involved taking constrained random measurements within a 2-m radius of the focal fish. Darters were generally over-represented in microhabitats with higher average velocities, greater amounts of erosional substrata, and lower amounts of depositional and large substrata. The two methods generally yielded similar patterns of microhabitat use. Nonetheless, of the seven microhabitat categories in which differential microhabitat use occurred in summer, four were present in both data sets, but three differed between methods. We observed no differences between methods for autumn data. Finally, the standard deviations of the summer-stratified random data set were significantly greater (sign test, P < 0.05) than those of the constrained data set. Our results suggest that either method for quantifying microhabitat availability can be used to quantify the general habitat use patterns of this species, but constrained analyses yielded a more restricted view of the total habitat available. Nonetheless, if the fishes range over a site, clearly stratified habitat availability analysis is preferred. Handling editor: J. A. Cambray  相似文献   

7.
动物的生境选择具有空间尺度依赖性, 在不同空间尺度上影响生境选择的环境因素有所不同。研究不同空间尺度下动物生境选择的关键影响因子及其季节性变化, 对于全面了解物种的生境资源需求和开展生境保护具有重要意义。绿尾虹雉(Lophophorus lhuysii)是中国特有的高山雉类, 国家一级重点保护野生动物, 具有极高的保护价值。然而, 目前尚未对其不同尺度和时期的生境选择进行过探究。本研究于2019年10月至2020年10月, 在四川卧龙国家级自然保护区的羊角湾、魏家沟和文扎都3个区域共布设15条样线、303个样方, 并结合红外相机监测(176个红外相机位点), 对保护区内绿尾虹雉种群的生境利用状况进行了调查, 使用主成分分析和逻辑斯蒂回归模型分别从景观和微生境两个尺度对繁殖期(3‒8月)和非繁殖期(9月至翌年2月)的生境选择模式进行了分析。结果显示, 在景观尺度上, 在繁殖期和非繁殖期都显著偏好海拔较高(3,700‒ 4,300 m)、坡度较小(27°‒33°)、靠近阳坡、草甸和流石滩比例较高而森林和灌丛比例较低的生境。在微生境尺度上, 绿尾虹雉在繁殖期显著偏好岩石盖度较高的生境; 而非繁殖期则显著偏好草本盖度较高、灌木盖度和落叶盖度较低的生境。研究表明, 绿尾虹雉在景观和微生境尺度上均对生境有明显的选择性, 并且其微生境选择还存在季节性变化, 反映了该物种在生活史不同阶段具有不同的资源需求。本研究丰富了绿尾虹雉的基础生态学信息, 为卧龙及其他自然保护区绿尾虹雉的生境管理和种群保护工作提供了参考。  相似文献   

8.
本研究采用垂直面取样法,对中国长白山北坡不同海拔及干扰程度下访花食蚜蝇群落的物种组成、多度、丰富度及多样性进行了调查研究。我们选择了不同垂直带的两个样地,分别位于800~1 100 m和1 750 ~2 150 m;每个样地选取3种生境类型,每一生境类型采样面积为20 m×20 m。252组调查数据表明,共采到访花食蚜蝇42种2 540个体。不同海拔生境访花食蚜蝇的组成、多度、丰富度及多样性的差异分析结果表明: 低海拔样地内不同生境访花食蚜蝇的群落相似性高于高海拔样地;低海拔样地访花食蚜蝇的多度高于高海拔样地,而物种丰富度低于高海拔样地;不同生境类型访花食蚜蝇多样性指数存在差异,但高海拔样地与低海拔样地多样性差异不显著;过渡林生境(岳桦林带)与次生林生境(针阔混交林带Ⅱ)中访花食蚜蝇的多样性较高。保护珍稀植物物种的人工植物花园访花食蚜蝇多样性仅次于过渡林生境(岳桦林带)与次生林生境(针阔混交林带Ⅱ),保护作用显著。  相似文献   

9.
This study describes the pattern of invertebrate species richness in a river reach with large differences in habitat complexity at two, hierarchically nested, spatial scales. The aim was to determine whether the mass effect was likely to be increasing invertebrate species richness in epilithic microhabitats in this river. The mass effect is the process by which the species richness of a patch is increased when it acts as a ‘sink’ for species generated by ‘source’ patches. Microhabitat patch types in Mountain River, Tasmania, were distinguished on the basis of physical structure and orientation on the river bed. They were nested within two types of riffle with contrasting structural complexity: bedrock and boulder-cobble riffles. It was hypothesized that microhabitats with high species richness would act as source patches, contributing species to other microhabitats (sinks) and thereby increasing their species richness. Microhabitat sampling was carried out in four consecutive seasons and rarefaction was used to estimate riffle-scale species richness. Analysis of variance ( ANOVA ) was used to compare the identical microhabitats present in the contrasting riffle types, to detect evidence of the mass effect in either riffle type. The more structurally complex boulder-cobble riffles had higher species richness than did bedrock riffles. Amongst the microhabitats, the spaces beneath the cobbles had the most species. Microhabitats accounted for a higher percentage of the variation in species richness than did differences between riffles of the same type. No evidence was found for the operation of the mass effect in either riffle type. The majority of species found only in boulder-cobble riffles were unique to the beneath-cobble microhabitat and appeared to be unable to colonize other microhabitats, even as transients. In Mountain River, small-scale habitat characteristics appeared to be more important than larger-scale effects in determining microhabitat species richness.  相似文献   

10.
11.
Mature forests have structural habitat features that can take hundreds of years to develop, and large reserves alone are unlikely to ensure conservation of the species that rely on these features. This paper outlines a proposed new approach to managing mature forest features, the ‘mature habitat management approach’, in areas outside of reserves. The objective was to maintain a network of current and future mature forest habitat distributed across the landscape. The approach is designed to complement the existing reserve network and management actions and is tenure‐blind. Spatial information on the availability of mature forest habitat at the local (1‐km radius) and landscape (5‐km radius) scales is used for decisions on retention within a 1‐km radius of a harvest area, to reach the minimum target of 20% and 30% retention of mature forest at the local and landscape spatial scales, respectively. We believe this approach could contribute to meeting the conservation needs of many species that require mature forest features for refuge and breeding in Tasmania and elsewhere.  相似文献   

12.
1. Numerous interacting abiotic and biotic factors influence niche use and assemblage structure of freshwater fishes, but the strength of each factor changes with spatial scale. Few studies have examined the role of interspecific competition in structuring stream fish assemblages across spatial scales. We used field and laboratory approaches to examine microhabitat partitioning and the effect of interspecific competition on microhabitat use in two sympatric stream fishes (Galaxias‘southern’ and Galaxias gollumoides) at large (among streams and among sites within streams) and small (within artificial stream channels) spatial scales. 2. Diurnal microhabitat partitioning and interspecific competition at large spatial scales were analysed among three sympatry streams (streams with allotopic and syntopic sites; three separate catchments) and four allopatry streams (streams with only allotopic sites; two separate catchments). Electro‐fishing was used to sample habitat use of fishes at 30 random points within each site by quantifying four variables for each individual: water velocity, depth, distance to nearest cover and substratum size. Habitat availability was then quantified for each site by measuring those variables at each of 50 random points. Diet and stable isotope partitioning was analysed from syntopic sites only. Diel cycles of microhabitat use and interspecific competition at small spatial scales were examined by monitoring water velocity use over 48 h in artificial stream channels for three treatments: (i) allopatric G. ‘southern’ (10 G. ‘southern’); (ii) allopatric G. gollumoides (10 G. gollumoides) and (iii) sympatry (five individuals of each species). 3. One hundred and ninety‐four G. ‘southern’ and 239 G. gollumoides were sampled across all seven streams, and habitat availability between the two species was similar among all sites. Galaxias‘southern’ utilised faster water velocities than G. gollumoides in both the field and in channel experiments. Both species utilised faster water velocities in channels at night than during the day. Diet differences were observed and were supported by isotopic differences (two of three sites). No interspecific differences were observed for the other three microhabitat variables in the field, and multivariate habitat selection did not differ between species. Interspecific competition had no effect on microhabitat use of either species against any variable either in the field (large scale) or in channels (small scale). 4. The results suggest that niche partitioning occurs along a subset of microhabitat variables (water velocity use and diet). Interspecific competition does not appear to be a major biotic factor controlling microhabitat use by these sympatric taxa at any spatial scale. The results further suggest that stream fish assemblages are not primarily structured by biotic factors, reinforcing other studies de‐emphasising interspecific competition.  相似文献   

13.
1. While studies of phytoplankton and terrestrial plant communities have increasingly emphasised the use of functional traits in ecological research, few have yet to apply this approach to zooplankton communities.
2. This study reviews laboratory and observational studies on zooplankton feeding and life history and provides a series of functional trait tables for the North American freshwater zooplankton. Qualitative and quantitative trait tables highlight areas where data were more scarce and point to which types of studies could fill in gaps in our knowledge of zooplankton niches.
3. Data were most complete for the Cladocera across most traits, while feeding information for cyclopoids was most sparse. Qualitative data that distinguished congeneric species were lacking for most groups.
4. A regional community dendrogram for common north-eastern North American zooplankton species was generated and shows that taxonomic differences between species do not capture fully functional differences based on the traits of body length, habitat, trophic group and feeding type.
5. The data collected here, combined with readily measurable species attributes, can be used to generate a multivariate measure of the functional niche of each species found in a community. Armed with this information, functional relationships that are useful for ecological studies of lake ecosystems can be more easily conducted.  相似文献   

14.
Aim To document continental‐ and regional‐scale variation in the size distributions of freshwater fish and examine some energetic, evolutionary and biogeographic explanations for these patterns. Location North America. Methods Regional species lists, coupled with habitat and body size information, were used to document the spatial patterns. Results At the continental scale, riverine specialist fishes show a unimodal, right‐skewed, body size distribution whereas habitat generalist and lacustrine specialist species exhibit bimodal size distributions, with only a slight preponderance of small‐mode species. Most large‐mode species are migratory. Resident species, unlike migratory ones, show a latitudinal increase in mean size, but the size increase across all species is steeper because the importance of large migratory species increases with latitude. Size distributions change from right‐ to left‐skewed with increasing latitude. Maximum body size does not change with increasing family richness but minimum size declines and skewness increases, consistent with diversification of small species. Skewness does not vary with mean family body size. Main conclusions Post‐glacial recolonization by large, habitat generalist, migratory species is the main determinant of latitudinal size distribution trends. There is little support for the energetic hypothesis, but the data are consistent with a negative Cope's rule.  相似文献   

15.
Progressive habitat transformation causes global changes in landscape biodiversity patterns, but can be hard to quantify. Rarefaction/extrapolation approaches can quantify within‐habitat biodiversity, but may not be useful for cases in which one habitat type is progressively transformed into another habitat type. To quantify biodiversity patterns in such transformed landscapes, we use Hill numbers to analyse individual‐based species abundance data or replicated, sample‐based incidence data. Given biodiversity data from two distinct habitat types, when a specified proportion of original habitat is transformed, our approach utilises a proportional mixture of two within‐habitat rarefaction/extrapolation curves to analytically predict biodiversity changes, with bootstrap confidence intervals to assess sampling uncertainty. We also derive analytic formulas for assessing species composition (i.e. the numbers of shared and unique species) for any mixture of the two habitat types. Our analytical and numerical analyses revealed that species unique to each habitat type are the most important determinants of landscape biodiversity patterns.  相似文献   

16.
Abstract Habitat usage characteristics of two species of native murid rodents, Pseudomys gracilicaudatus and Rattus lutreolus were investigated on an area of coastal heathland at Myall Lakes National Park. A grid of 151 trap stations comprising 17 traplines was positioned across a mosaic of habitats. At each trap station 19 structural vegetation and physical variables known to affect the microdistribution of small mammals were measured. Multivariate statistical procedures identified those microhabitat variables that contribute to individual species' habitat use and habitat partitioning, and reduce potential competition for space. Cluster analysis classified trap stations into one of six habitat types that were mapped on the study area, identifying a heterogeneous assemblage of interlocking habitats. The pattern is a consequence of topographic variation on the site and, to a lesser extent, its fire history. Trapping results show P. gracilicaudatus and R. lutreolus exhibit similar macrohabitat selection, preferring topographically low habitats, with both species predominantly occupying short dense heath with dense sedge cover. The high overlap in macrohabitat use is greatly reduced when considered trap station by trap station, so that discriminant function and multiple regression analyses demonstrate marked microhabitat selection. Elevation was a highly significant variable, accounting for 41% and 27% of the variance in the habitat used by P. gracilicaudatus and R. lutreolus, respectively. This variable represents a soil moisture gradient that determines changes in the floristic and structural components of the biotic environment. Two other structural vegetation variables and vegetation height contributed 30% of the variance in P. gracilicaudatus distribution. Sedge cover was found to be significant and explained 13% of the variance in R. lutreolus distribution. Within-habitat separation was explained best with a linear combination of variables in a discriminant function, rather than by any single variable. Differential microhabitat selection, interference competition and diet separation appear to be the major factors facilitating coexistence of these two species.  相似文献   

17.
Selection of habitat components by ungulates associated with parturition sites varies among and within species depending upon vulnerability to predators, variation in local topography and climate regimes, and the length of time that the maternal–neonatal unit spends at or near the parturition location. We marked 169 parturition locations of elk (Cervus elaphus nelsoni) in western Wyoming using vaginal implant transmitters and evaluated parturition-specific habitat selection at macro- and microhabitat scales using a resource selection function modeling approach. Elk calved in a variety of habitats, yet demonstrated selection at both spatial scales. We found the strongest support for models that incorporated multiple habitat features and focused on topographical and vegetative cover types that provide physical and thermal cover at the macrohabitat scale and for visual cover models at the microhabitat scale. Models based solely on forage availability or quality were least supported at both scales, which may be indicative of a brief occupation of the parturition location or low heterogeneity in the availability of forage resources on parturition ranges. Results of early elk natural history studies may have represented a bias introduced by variable sightability and accessibility of females with calves and a lack of differentiation between calving and neonatal periods. More clearly defining calving site selection and removing biases toward more open habitats where sightability of neonates is greater may be used by wildlife or land managers to improve or protect calving habitats, which is often a stated objective of management actions. The results of this study suggest that microhabitat is more important to elk and that temporal closures over broad areas versus closures focused on specific macrohabitats may be more effective in protecting calving animals. © 2011 The Wildlife Society.  相似文献   

18.
SUMMARY 1. A study of microhabitat preferences was conducted on Zingel asper , an endangered endemic species from the Rhône catchment. A generalised linear model allowed us to test statistically the non-random habitat selection and the effect of season and site on this habitat selection.
2. The analysis detected significant preferences for the three physical variables considered: water depth, water velocity and substratum size.
3. A seasonal shift in the substratum size preference was found: preference for stones increasing during the spawning season. Depth preference varied between sites, suggesting a possible plasticity in habitat selection.
4. These results suggest that the availability of suitable physical habitat plays a significant role in determining fish distribution in the River Beaume.  相似文献   

19.
生境破碎化对动物种群存活的影响   总被引:39,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

20.
祖悦晴  魏妍儿  张曦文  于德永 《生态学报》2022,42(17):6937-6947
快速的城市化过程带来的生境斑块破碎化及损失会影响物种迁移、捕食等生态活动,对生物多样性构成威胁。然而,现有生态保护区可能无法覆盖其内生物的必要活动范围。生态保护区外的生境斑块对于维持生态过程也具有重要作用,因此识别生态保护区外的关键斑块并加以保护非常重要。以北京市延庆区为研究区,划分两种生境斑块,即核心生境斑块和潜在生境斑块,并基于图论构建生境网络。考虑地表覆盖类型、坡度、人类活动等因素构建生境阻力面。结合未来土地利用类型变化的模拟,研究城市化过程对区域生境网络和景观连接度的影响,选用CLUE-S模型模拟土地利用类型变化的格局。结合生境斑块特征和未来城市土地利用变化情况设计了3种未来生境变化情景。利用连接概率指数(PC)和网络连接度变化率(dI)评价不同生境变化情景下生态保护区外潜在生境斑块的景观连接度重要性,判断保护优先顺序,并分析景观格局变化对不同迁移能力物种的影响。结果表明:生态保护区外的全部潜在生境斑块对维持生境整体景观连接度有最大2.15%的影响,单个潜在生境斑块对维持景观连接度有最大0.28%的影响。此外,景观格局及其变化对不同迁移能力物种的影响差异显著,因此需针对保护物种和城市生境特征设计保护方案,研究区需要优先保护大中型斑块和位于关键位置的小型斑块。为了满足对生物多样性保护的需求,建议在区分生境斑块保护优先顺序时考虑生境斑块对景观连接度的贡献和城市化扩展过程的压力。研究为城市生物多样性保护和生境管理提供了方法参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号