首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present an approximation scheme for deriving reaction rate equations of genetic regulatory networks. This scheme predicts the timescales of transient dynamics of such networks more accurately than does standard quasi-steady state analysis by introducing prefactors to the ODEs that govern the dynamics of the protein concentrations. These prefactors render the ODE systems slower than their quasi-steady state approximation counterparts. We introduce the method by examining a positive feedback gene regulatory network, and show how the transient dynamics of this network are more accurately modeled when the prefactor is included. Next, we examine the repressilator, a genetic oscillator, and show that the period, amplitude, and bifurcation diagram defining the onset of the oscillations are better estimated by the prefactor method. Finally, we examine the consequences of the method to the dynamics of reduced models of the phage lambda switch, and show that the switching times between the two states is slowed by the presence of the prefactor that arises from protein multimerization and DNA binding.  相似文献   

3.
Beal J  Lu T  Weiss R 《PloS one》2011,6(8):e22490

Background

The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry.

Methodology/Principal Findings

To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks.

Conclusions/Significance

Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.  相似文献   

4.
Structural systems identification of genetic regulatory networks   总被引:2,自引:0,他引:2  
MOTIVATION: Reverse engineering of genetic regulatory networks from experimental data is the first step toward the modeling of genetic networks. Linear state-space models, also known as linear dynamical models, have been applied to model genetic networks from gene expression time series data, but existing works have not taken into account available structural information. Without structural constraints, estimated models may contradict biological knowledge and estimation methods may over-fit. RESULTS: In this report, we extended expectation-maximization (EM) algorithms to incorporate prior network structure and to estimate genetic regulatory networks that can track and predict gene expression profiles. We applied our method to synthetic data and to SOS data and showed that our method significantly outperforms the regular EM without structural constraints. AVAILABILITY: The Matlab code is available upon request and the SOS data can be downloaded from http://www.weizmann.ac.il/mcb/UriAlon/Papers/SOSData/, courtesy of Uri Alon. Zak's data is available from his website, http://www.che.udel.edu/systems/people/zak.  相似文献   

5.
6.
Robustness and evolvability in genetic regulatory networks   总被引:3,自引:0,他引:3  
Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of genetic perturbations can eventually make the organism acquire new functions and adapt to new environments. It is still an open problem to determine how robustness and evolvability blend together at the genetic level to produce stable organisms that yet can change and evolve. Here we address this problem by studying the robustness and evolvability of the attractor landscape of genetic regulatory network models under the process of gene duplication followed by divergence. We show that an intrinsic property of this kind of networks is that, after the divergence of the parent and duplicate genes, with a high probability the previous phenotypes, encoded in the attractor landscape of the network, are preserved and new ones might appear. The above is true in a variety of network topologies and even for the case of extreme divergence in which the duplicate gene bears almost no relation with its parent. Our results indicate that networks operating close to the so-called "critical regime" exhibit the maximum robustness and evolvability simultaneously.  相似文献   

7.
Coarse-grained reverse engineering of genetic regulatory networks   总被引:4,自引:0,他引:4  
Wahde M  Hertz J 《Bio Systems》2000,55(1-3):129-136
We have modeled genetic regulatory networks in the framework of continuous-time recurrent neural networks. A method for determining the parameters of such networks, given expression level time series data, is introduced and evaluated using artificial data. The method is also applied to a set of actual expression data from the development of rat central nervous system.  相似文献   

8.
An evolutionary model of genetic regulatory networks is developed, based on a model of network encoding and dynamics called the Artificial Genome (AG). This model derives a number of specific genes and their interactions from a string of (initially random) bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics are determined by updating the gene network as if it were a simple Boolean network. The generic behaviour of the AG model is investigated in detail. In particular, we explore the characteristic network topologies generated by the model, their dynamical behaviours, and the typical variance of network connectivities and network structures. These properties are demonstrated to agree with a probabilistic analysis of the model, and the typical network structures generated by the model are shown to lie between those of random networks and scale-free networks in terms of their degree distribution. Evolutionary processes are simulated using a genetic algorithm, with selection acting on a range of properties from gene number and degree of connectivity through periodic behaviour to specific patterns of gene expression. The evolvability of increasingly complex patterns of gene expression is examined in detail. When a degree of redundancy is introduced, the average number of generations required to evolve given targets is reduced, but limits on evolution of complex gene expression patterns remain. In addition, cyclic gene expression patterns with periods that are multiples of shorter expression patterns are shown to be inherently easier to evolve than others. Constraints imposed by the template-matching nature of the AG model generate similar biases towards such expression patterns in networks in initial populations, in addition to the somewhat scale-free nature of these networks. The significance of these results on current understanding of biological evolution is discussed.  相似文献   

9.
Plant development gives rise to a staggering complexity of morphological structures with different shapes, colors, and functions. Understanding the evolution of control mechanisms that underlie developmental processes provides insights into causes of morphological diversity and, therefore, is of great interest to biologists. New genomic resources and techniques enable biologists to assess for the first time the evolution of developmental regulatory networks at a global scale. Here, we address the question of how comparative regulatory genomics can be used to reveal the evolutionary dynamics of control networks linked to morphological evolution in plants.  相似文献   

10.
MOTIVATION: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. RESULTS: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

11.
Robust stability of stochastic delayed genetic regulatory networks   总被引:1,自引:0,他引:1  
Gene regulation is an intrinsically noisy process, which is subject to intracellular and extracellular noise perturbations and environment fluctuations. In this paper, we consider the robust stability analysis problem of genetic regulatory networks with time-varying delays and stochastic perturbation. Different from other papers, the genetic regulate system considers not only stochastic perturbation but also parameter disturbances, it is in close proximity to the real gene regulation process than determinate model. Based on the Lyapunov functional theory, sufficient conditions are given to ensure the stability of the genetic regulatory networks. All the stability conditions are given in terms of LMIs which are easy to be verified. Illustrative examples are presented to show the effectiveness of the obtained results.  相似文献   

12.
Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.  相似文献   

13.
Multivariate analysis of noise in genetic regulatory networks   总被引:4,自引:0,他引:4  
Stochasticity is an intrinsic property of genetic regulatory networks due to the low copy numbers of the major molecular species, such as, DNA, mRNA, and regulatory proteins. Therefore, investigation of the mechanisms that reduce the stochastic noise is essential in understanding the reproducible behaviors of real organisms and is also a key to design synthetic genetic regulatory networks that can reliably work. We use an analytical and systematic method, the linear noise approximation of the chemical master equation along with the decoupling of a stoichiometric matrix. In the analysis of fluctuations of multiple molecular species, the covariance is an important measure of noise. However, usually the representation of a covariance matrix in the natural coordinate system, i.e. the copy numbers of the molecular species, is intractably complicated because reactions change copy numbers of more than one molecular species simultaneously. Decoupling of a stoichiometric matrix, which is a transformation of variables, significantly simplifies the representation of a covariance matrix and elucidates the mechanisms behind the observed fluctuations in the copy numbers. We apply our method to three types of fundamental genetic regulatory networks, that is, a single-gene autoregulatory network, a two-gene autoregulatory network, and a mutually repressive network. We have found that there are multiple noise components differently originating. Each noise component produces fluctuation in the characteristic direction. The resulting fluctuations in the copy numbers of the molecular species are the sum of these fluctuations. In the examples, the limitation of the negative feedback in noise reduction and the trade-off of fluctuations in multiple molecular species are clearly explained. The analytical representations show the full parameter dependence. Additionally, the validity of our method is tested by stochastic simulations.  相似文献   

14.
The evolution and development of complex phenotypes in social insect colonies, such as queen-worker dimorphism or division of labor, can, in our opinion, only be fully understood within an expanded mechanistic framework of Developmental Evolution. Conversely, social insects offer a fertile research area in which fundamental questions of Developmental Evolution can be addressed empirically. We review the concept of gene regulatory networks (GRNs) that aims to fully describe the battery of interacting genomic modules that are differentially expressed during the development of individual organisms. We discuss how distinct types of network models have been used to study different levels of biological organization in social insects, from GRNs to social networks. We propose that these hierarchical networks spanning different organizational levels from genes to societies should be integrated and incorporated into full GRN models to elucidate the evolutionary and developmental mechanisms underlying social insect phenotypes. Finally, we discuss prospects and approaches to achieve such an integration.  相似文献   

15.

Background  

The reconstruction of genetic regulatory networks from microarray gene expression data has been a challenging task in bioinformatics. Various approaches to this problem have been proposed, however, they do not take into account the topological characteristics of the targeted networks while reconstructing them.  相似文献   

16.
17.
We describe Dizzy, a software tool for stochastically and deterministically modeling the spatially homogeneous kinetics of integrated large-scale genetic, metabolic, and signaling networks. Notable features include a modular simulation framework, reusable modeling elements, complex kinetic rate laws, multi-step reaction processes, steady-state noise estimation, and spatial compartmentalization.  相似文献   

18.
We introduce simple models of genetic regulatory networks and we proceed to the mathematical analysis of their dynamics. The models are discrete time dynamical systems generated by piecewise affine contracting mappings whose variables represent gene expression levels. These models reduce to boolean networks in one limiting case of a parameter, and their asymptotic dynamics approaches that of a differential equation in another limiting case of this parameter. For intermediate values, the model present an original phenomenology which is argued to be due to delay effects. This phenomenology is not limited to piecewise affine model but extends to smooth nonlinear discrete time models of regulatory networks. In a first step, our analysis concerns general properties of networks on arbitrary graphs (characterisation of the attractor, symbolic dynamics, Lyapunov stability, structural stability, symmetries, etc). In a second step, focus is made on simple circuits for which the attractor and its changes with parameters are described. In the negative circuit of 2 genes, a thorough study is presented which concern stable (quasi-)periodic oscillations governed by rotations on the unit circle – with a rotation number depending continuously and monotonically on threshold parameters. These regular oscillations exist in negative circuits with arbitrary number of genes where they are most likely to be observed in genetic systems with non-negligible delay effects.  相似文献   

19.
20.
In systems biology, a number of detailed genetic regulatory networks models have been proposed that are capable of modeling the fine-scale dynamics of gene expression. However, limitations on the type and sampling frequency of experimental data often prevent the parameter estimation of the detailed models. Furthermore, the high computational complexity involved in the simulation of a detailed model restricts its use. In such a scenario, reduced-order models capturing the coarse-scale behavior of the network are frequently applied. In this paper, we analyze the dynamics of a reduced-order Markov Chain model approximating a detailed Stochastic Master Equation model. Utilizing a reduction mapping that maintains the aggregated steady-state probability distribution of stochastic master equation models, we provide bounds on the deviation of the Markov Chain transient distribution from the transient aggregated distributions of the stochastic master equation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号