首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex distributions of morphological character states in the Indo-Pacific palm tribe Areceae (Arecaceae; Arecoideae) are potentially challenging for the delimitation of its genera. In the first exhaustive sampling of all 65 genera of the Areceae, we examined relationships of two of the tribe's most problematic genera, Heterospathe and Rhopaloblaste, using portions of the low-copy nuclear genes phosphoribulokinase (PRK) and RNA-polymerase II subunit B (RPB2). Both genera fell within a highly supported clade comprising all Areceae genera, but are clearly unrelated. Rhopaloblaste was strongly supported as monophyletic and is most closely related to Indian Ocean genera. Heterospathe was resolved with strong support within a clade of western Pacific genera, but with the monotypic Alsmithia nested within it. Ptychosperma micranthum, which has previously been included in both Heterospathe and Rhopaloblaste, is excluded from these and from Ptychosperma, supporting its recent placement in a new genus Dransfieldia. Morphological comparisons indicate that the crownshaft is putatively synapomorphic for the Areceae with numerous reversals within the clade and some independent origins elsewhere. The putative diagnostic characters of Heterospathe show high levels of homoplasy, and the genus can only be distinguished by a suite of characters, whereas Rhopaloblaste is more clearly defined. Our results have implications not only for the two genera in focus, but have also been influential for the new classification of the Areceae.  相似文献   

2.
3.
Pseudophyllidea van Beneden in Carus, 1863, a well recognised order of tapeworms (Platyhelminthes: Eucestoda), is suppressed because it is composed of two phylogenetically unrelated groups, for which the new names Bothriocephalidea and Diphyllobothriidea are proposed. The new orders differ from each other in the following characters: (i) position of the genital pore: on the dorsal, dorso-lateral or lateral aspects and posterior to the ventral uterine pore in the Bothriocephalidea versus on the ventral aspect of segments and anterior to the uterine pore in the Diphyllobothriidea; (ii) the presence of a muscular external seminal vesicle in the Diphyllobothriidea, which is absent in the Bothriocephalidea; (iii) the presence of a uterine sac in the Bothriocephalidea, which is absent in the Diphyllobothriidea; and (iv) the spectrum of definitive hosts: mainly teleost fishes, never homoiothermic vertebrates in the Bothriocephalidea, versus tetrapods, most frequently mammals, in the Diphyllobothriidea, with species of Diphyllobothrium, Spirometra and Diplogonoporus parasitic in humans. The Diphyllobothriidea, which includes 17 genera in four families (Digramma is synonymised with Ligula), is associated with cestode groups that have a range of plesiomorphic characters (Haplobothriidea and Caryophyllidea), whereas the Bothriocephalidea, consisting of 41 genera grouped in four families, is the sister-group to the 'acetabulate' or 'tetrafossate' cestodes, which are generally regarded as having derived characters.  相似文献   

4.
A cladistic analysis of chloroplast DNA restriction site variation among representatives of all subfamilies of the grass family (Poaceae), using Joinvillea (Joinvilleaceae) as the outgroup, placed most genera into two major clades. The first of these groups corresponds to a broadly circumscribed subfamily Pooideae that includes all sampled representatives of Ampelodesmeae, Aveneae, Brachypodieae, Bromeae, Diarrheneae, Meliceae, Poeae, Stipeae, and Triticeae. The second major clade includes all sampled representatives of four subfamilies (Panicoideae [tribes Andropogoneae and Paniceae], Arundinoideae [Arundineae], Chloridoideae [Eragrostideae], and Centothecoideae [Centotheceae]). Within this group (the “PACC” clade), the Panicoideae are resolved as monophyletic and as the sister group of the clade that comprises the other three subfamilies. Within the latter group, Danthonia (Arundinoideae) and Eragroslis (Chloridoideae) are resolved as a stable monophyletic group that excludes Phragmites (Arundinoideae); this structure is inconsistent with the Arundinoideae being monophyletic as currently circumscribed. The PACC clade is placed within a more inclusive though unstable clade that includes the woody Bambusoideae (Bambuseae) plus several disparate tribes of herbaceous grasses of uncertain affinity that are often recognized as herbaceous Bambusoideae (Brachyelytreae, Nardeae, Olyreae, Oryzeae, and Phareae). Among eight most-parsimonious trees resolved by the analysis, four include a monophyletic Bambusoideae sensu lato (comprising Bambuseae and all five of these herbaceous tribes) as the sister group of the PACC clade; in the other four trees these bambusoid elements are not resolved as monophyletic, and the PACC clade is nested among these tribes. These results are consistent with those of previous analyses that resolve a basal or near-basal branch within the family between Pooideae and all other grasses. However, resolution by the present analysis of the PACC clade, which includes Centothecoideae, Chloridoideae, and Panicoideae, but excludes Bambusoideae, is inconsistent with the results of previous analyses that place Bambusoideae and Panicoideae in a monophyletic group that excludes Centothecoideae and Chloridoideae.  相似文献   

5.
A phylogenetic analysis of tapeworms (Eucestoda) based on complete sequences of the 18S rRNA genes of 43 taxa (including new sequences of 12 species) was carried out, with the emphasis on the groups parasitising teleost fish and reptiles. Spathebothriidea and Trypanorhyncha (the latter group being paraphyletic) appeared as basal groups of the Eucestoda but their position was not stable. The tetrafossate orders (Litobothriidea, Lecanicephalidea, Tetraphyllidea, Proteocephalidea, Nippotaeniidea, Tetrabothriidea and Cyclophyllidea) were well separated from the remaining groups. Results supported polyphyly of the Pseudophyllidea formed by two distinct clades: one with diphyllobothriids (Diphyllobothrium, Schistocephalus, Spirometra and Duthiersia) and another including Abothrium, Probothriocephalus, Eubothrium and Bothriocephalus. The former pseudophyllidean clade formed a separate branch with the Caryophyllidea (Khawia and Hunterella) and Haplobothriidea (Haplobothrium), the latter taxon being closely related to either caryophyllideans or diphyllobothriids in different analyses. Proteocephalideans formed a monophyletic group in all analyses and constituted a clade within the Tetraphyllidea thus rendered paraphyletic. Within the Proteocephalidea, the Acanthotaeniinae (Acanthotaenia from reptiles in Africa) and Gangesiinae (Gangesia and Silurotaenia from silurid fish in the Palearctic Region) were separated from parasites of freshwater fish and mammals. The family Proteocephalidae was found to be paraphyletic due to the placement of a monticelliid species, Monticellia sp., in a clade within the former family. The genus Proteocephalus appeared as an artificial assemblage of unrelated taxa which is congruent with previous molecular analyses.  相似文献   

6.
Skinks of the genus Sphenomorphus are the most diverse clade of squamates in the Philippine Archipelago. Morphological examination of these species has defined six phenotypic groups that are commonly used in characterizations of taxonomic hypotheses. We used a molecular phylogeny based on four mitochondrial and two nuclear genes to assess the group's biogeographical history in the archipelago and examine the phylogenetic validity of the currently recognized Philippine species groups. We re‐examined traditional characters used to define species groups and used multivariate statistics to quantitatively evaluate group structure in morphometric space. Clustering analyses of phenotypic similarity indicate that some (but not all) members of previously defined species groups are phenotypically most similar to other members of the same group. However, when species group membership was mapped on our partitioned Bayesian phylogenetic hypothesis, only one species group corresponds to a clade; all other species group arrangements are strongly rejected by our phylogeny. Our results demonstrate that (1) previously recognized species group relationships were misled by phenotypic convergence; (2) Sphenomorphus is widely paraphyletic; and (3) multiple lineages have independently invaded the Philippines. Based on this new perspective on the phylogenetic relationships of Philippine Sphenomorphus, we revise the archipelago's diverse assemblage of species at the generic level, and resurrect and/or expand four previously recognized genera, and describe two new genera to accommodate the diversity of Philippine skinks of the Sphenomorphus group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1217–1243.  相似文献   

7.
Most of the species of the family Rubiaceae with flowers arranged in head inflorescences are currently classified in three distantly related tribes, Naucleeae (subfamily Cinchonoideae) and Morindeae and Schradereae (subfamily Rubioideae). Within Morindeae the type genus Morinda is traditionally and currently circumscribed based on its head inflorescences and syncarpous fruits (syncarps). These characters are also present in some members of its allied genera, raising doubts about the monophyly of Morinda. We perform Bayesian phylogenetic analyses using combined nrETS/nrITS/trnT-F data for 67 Morindeae taxa and five outgroups from the closely related tribes Mitchelleae and Gaertnereae to rigorously test the monophyly of Morinda as currently delimited and assess the phylogenetic value of head inflorescences and syncarps in Morinda and Morindeae and to evaluate generic relationships and limits in Morindeae. Our analyses demonstrate that head inflorescences and syncarps in Morinda and Morindeae are evolutionarily labile. Morinda is highly paraphyletic, unless the genera Coelospermum, Gynochthodes, Pogonolobus, and Sarcopygme are also included. Morindeae comprises four well-supported and morphologically distinct major lineages: Appunia clade, Morinda clade (including Sarcopygme and the lectotype M. royoc), Coelospermum clade (containing Pogonolobus and Morinda reticulata), and Gynochthodes–Morinda clade. Four possible alternatives for revising generic boundaries are presented to establish monophyletic units. We favor the recognition of the four major lineages of Morindeae as separate genera, because this classification reflects the occurrence of a considerable morphological diversity in the tribe and the phylogenetic and taxonomic distinctness of its newly delimited genera.  相似文献   

8.
With about 800 Recent species, ‘miters’ are a widely distributed group of tropical and subtropical gastropods that are most diverse in the Indo‐West Pacific. They include the two families Mitridae and Costellariidae, similar in shell morphology and traditionally treated as close relatives. Some genera of deep‐water Ptychatractidae and Volutomitridae are close to miters in shell morphology, and the term ‘mitriform gastropods’ has been introduced to refer to Mitridae, Costellariidae, and this assortment of convergent forms. The present study aimed at the reconstruction of phylogenetic relationships of mitriform gastropods based on representative taxon sampling. Four genetic markers [cytochrome c oxidase subunit I (COI), 16S and 12S rRNA mitochondrial genes, and H3 (Histone 3) nuclear gene] were sequenced for over 90 species in 20 genera, and the molecular data set was supplemented by studies of radula morphology. Our analysis recovered Mitridae as a monophyletic group, whereas the genus Mitra was found to be polyphyletic. Of 42 mitrid species included in the analysis, 37 formed a well‐supported ‘core Mitridae’ consisting of four major clades, three of them consistent with the subfamilies Cylindromitrinae, Imbricariinae, and Mitrinae, and Strigatella paupercula standing out by itself. Basal to the ‘core Mitridae’ are four minor lineages, with the genus Charitodoron recognized as sister group to all other Mitridae. The deep‐water family Pyramimitridae shows a sister relationship to the Mitridae, with high support for a Pyramimitridae + Mitridae clade. Our results recover the monophyly of the Costellariidae, which form a well‐supported clade that also includes Ptychatractidae, Columbariinae, and Volutomitridae, but not Mitridae. Most derived and diverse amongst Costellariidae are species of Vexillum, characterized by a bow‐shaped, multicuspidate rachidian tooth. Several previously unrecognized deep‐water costellariid lineages are revealed. Their members retain some plesiomorphies – in particular a tricuspidate rachidian tooth – that makes them morphologically intermediate between ptychatractids and Vexillum. The taxa of Ptychatractidae included in the analysis are not monophyletic, but form three well‐supported, unrelated groupings, corresponding respectively to Ceratoxancus + Latiromitra, Exilia, and Exiliodea. None of them shows an affinity to Pseudolividae. © 2015 The Linnean Society of London  相似文献   

9.
We investigated the phylogenetic relationships of 12 species within a single genus of neotropical passerine (Poospiza) using 849 bp (283 codons) of the cytochrome b mitochondrial gene. We further explored evolutionary affinities of these taxa using sequence from an additional 47 thraupine (tanagers) and 7 emberizine (sparrows and buntings) genera, members of the predominantly New World family Emberizidae. Poospiza have traditionally been considered part of the emberizine radiation. However, our analyses suggest that members of this genus are more closely related to some thraupine lineages than they are to the other neotropical emberizine genera included in our study (Atlapetes, Embernagra, Melopyrrha, Phrygilus, Saltatricula, Tiaris). Although member taxa are closely related, the genus Poospiza appears to be paraphyletic with representatives of 6 thraupine genera (Cnemoscopus, Cypsnagra, Hemispingus, Nephelornis, Pyrrhocoma, Thylpopsis) interspersed among four well-supported Poospiza clades. The majority of species within this Poospiza–thraupine clade have geographic ranges that are exclusive to, or partially overlap with, the Andes Mountains. It is probable that these mountains have played an important role in driving cladogenesis within this group. Sequence divergence (transversions only; mean 4.7 ± 1.3%) within the clade suggests that much of this diversification occurred within the late Miocene and Pliocene, a period coincident with major orogenic activity in central-western South America.  相似文献   

10.
Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. Neither Cyrtonaias nor Psorula were supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias), Lampsilini (two lineages: Cyrtonaias explicata/Sphenonaias microdon, and Pachynaias), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the genera Psoronaias, Psorula and Popenaias. The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae.  相似文献   

11.
The complete mitochondrial cytochromebgenes of 53 genera of oscine passerine birds representing the major groups of finches and some allies were compared. Phylogenetic trees resulting from three levels of character partition removal (no data removed, transitions at third positions of codons removed, and all transitions removed [transversion parsimony]) were generally concordant, and all supported several basic statements regarding relationships of finches and finch-like birds, including: (1) larks (Alaudidae) show no close relationship to any finch group; (2)Peucedramus(olive warbler) is phylogenetically far removed from true wood warblers; (3) a clade consisting of fringillids, passerids, motacillids, and emberizids is supported, and this clade is characterized by evolution of a vestigial 10th wing primary; and (4) Hawaiian honeycreepers are derived from within the cardueline finches. Excluding transition substitutions at third positions of codons resulted in phylogenetic trees similar to, but with greater bootstrap nodal support than, trees derived using either all data (equally weighted) or transversion parsimony. Relative to the shortest trees obtained using all data, the topologies obtained after elimination of third-position transitions showed only slight increases in realized treelength and homoplasy. These increases were negligable compared to increases in overall nodal support; therefore, this partition removal scheme may enhance recovery of deep phylogenetic signal in protein-coding DNA datasets.  相似文献   

12.
13.
A cladistic analysis was conducted to test the monophyly of Eschweilera and Lecythis as well as to examine the relationships of these two genera and their close relatives Bertholletia and Corythophora. The study included 86 species, representing all four genera and covering the range of taxonomic and morphological variation in the genera. The data matrix included 49 parsimony-informative characters derived from vegetative, floral, fruit, and seed morphology and anatomy. The results based on the consensus of all most parsimonious trees indicate that Bertholletia, Corythophora, Eschweilera, and Lecythis form a clade supported by brachyparacytic stomata, the absence of pedicels (with subsequent reversals in several clades), a two or four-locular ovary, the presence of an aril, and the absence of cotyledons. Within the clade, the monophyly of Corythophora is supported by the presence of inflorescence scales and the absence of nectar. Eschweilera is monophyletic only if E. congestiflora and E. simiorum are excluded. The monophyly of Eschweilera is supported by the presence of a two-locular ovary. Lecythis is not monophyletic, but sections Corrugata, Pisonis, and Poiteaui are monophyletic. Three species of section Lecythis are more closely related to Eschweilera, and other species of section Lecythis along with Bertholletia excelsa remain as unresolved.  相似文献   

14.
Polemoniaceae are often considered a model family for studying evolutionary processes, yet a reliable phylogeny for the family is only now beginning to emerge. To test the monophyly of this family and to elucidate intergeneric relationships, we employed comparative sequencing of the chloroplast gene matK. Parsimony analysis of matK sequences representing 18 genera of Polemoniaceae and nine families from Asteridae sensu lato places Polemoniaceae apart from Solanaceae near Fouquieriaceae, Ericaceae, Sarraceniaceae, and Diapensiaceae. Both this and a subsequent analysis of 59 species of Polemoniaceae indicate that Cobaea is derived from within Polemoniaceae, rather than being the sister to Polemoniaceae as suggested by some authors. The tropical genera Bonplandia, Cantua, and Cobaea form a clade, and the remaining, primarily temperate genera, excluding Acanthogilia, form a second monophyletic group. Acanthogilia is placed ambiguously as sister to either the tropical or temperate groups depending on the location of the root for Polemoniaceae. Within the temperate lineage, Polemonium is sister to three large clades: a well-supported clade comprising Phlox, Gymnosteris, Linanthus, Leptodactylon, and Gilia filiformis; a moderately well-supported clade comprising Allophyllum, Collomia, Navarretia, and several species of Gilia; and a weakly supported clade comprising Eriastrum, Ipomopsis, Langloisia, Loeseliastrum, Loeselia, and several species of Gilia. In addition to revealing the extreme polyphyly of Gilia, this analysis suggests that Ipomopsis and Linanthus are also polyphyletic.  相似文献   

15.
Dung beetle species belonging to the worldwide tribe Canthonini (Scarabaeidae) and occurring in Madagascar are all endemic to that island. The Malagasy Canthonini form three lineages, one of which is the group Longitarsi that includes five genera. The phylogenetic relationships of Malagasy Canthonini are not fully resolved and only few species of Longitarsi have been included in previous studies. Here we infer the phylogenetic relationships within the Longitarsi group using molecular data and together with morphological examination revise the systematics of the group. The five genera of the Longitarsi group form one monophyletic clade and thus we suggest the synonymization of the younger genera Sikorantus, Phacosomoides, Madaphacosoma and Aleiantus; with the oldest genus belonging to this clade Epactoides. We describe two new species: Epactoides jounii sp. n and Epactoides mangabeensis sp. n. Most of the species of Longitarsi inhabit the eastern rainforests, with very low local species diversity and highly restricted geographical ranges. In the group Longitarsi four species are wingless. The loss of wings has evolved at least twice, at high altitude along the mountain range.  相似文献   

16.
A phylogenetic analysis based on 58 morphological characters including 18 species representing 14 genera over the 15 currently known in Darnini (Hemiptera: Membracidae) confirms the monophyly of this tribe. This result is particularly supported by the presence of cucullate setae on the ventral side of the femora. Two sister clades are inferred: the clade Funkhouseriana+ which groups four genera (Aspona, Cyphotes, Funkhouseriana, Taunaya) and exhibits a ‘bird dropping’ habitus and all other genera which exhibit a ‘dewdrop’ like habitus (Alobia, Darnis, Dectonura, Hebetica, Hebeticoides, Leptosticta, Ochrolomia, Stictopelta) or a ‘thorny’ habitus (Alcmeone, Sundarion). In the ‘dewdrop’ habitus, only the clade Ochrolomia+ is retained as a monophyletic unit. According to these results, pronotal shapes and habitus have evolved independently in each monophyletic unit and each one seems correlated with a particular type of mimicry strategy. According to the strategy, characters involved are different, a priori independent; moreover, they look coordinated regarding to the mimicry function they serve. The various evolutionary scenarios are discussed in relation to the phylogeny, and particularly in correlation with the non-gregarious behavior of these membracids, also coherent with their mimicry strategy.  相似文献   

17.
 Representatives of nearly all genera of the taxon-rich stem-succulent stapeliads and most of the few related, leafy genera were analyzed. Sequence data from two non-coding molecular markers (ITS region of nrDNA and trnT-L and trnL-F spacers as well as the trnL intron of cpDNA) support the traditional tribal affiliation of the genera, which form a monophyletic group. This monophylum breaks into a basal Neoschumannia/Anisotoma/Riocreuxia/Sisyranthus nk;clade, from which the core Ceropegieae are derived. The four Ceropegia species included are not monophyletic, and their relationship to Brachystelma changes depending on the marker studied. The stem succulent taxa fall in a number of well supported, but unresolved clades, the most prominent being the predominantly southern African clade comprising Orbea, Stapelia and some other genera. The most derived taxa of NE Africa, Duvaliandra and White-sloanea, are basal to this southern African clade. The other clades comprise the more basal genera of stem-succulent stapeliads, including the members of the Caralluma complex. Of the 17 genera accepted by Plowes for the Caralluma complex, seven are recognized: Caralluma, Apteranthes, Australluma, Boucerosia, Caudanthera, Desmidorchis and Monolluma. New combinations are proposed in 15 cases; Caralluma adscendens var. geniculata is raised to specific rank. Anomalluma is reinstated, and Pseudolithos mccoyi is transfered to it. A broadened concept for Orbea (incl. Angolluma and Orbeopsis) is recognized, but Orbeanthus is kept separate. The monotypic Ballyanthus, recently separated from Orbea, is nested within Duvalia. Piaranthus (incl. Huerniopsis) is monophyletic. The bitypic Notechidnopsis is reduced to the type species, N. tessellata, while N. columnaris is transferred to a new genus, Richtersveldia. Received February 25, 2002; accepted June 17, 2002 Published online: November 7, 2002 Address of the authors: Dr. Ulrich Meve (e-mail: ulrich.meve@uni-bayreuth.de) and Prof. Dr. Sigrid Liede (e-mail: sigrid.liede@uni-bayreuth.de), Universit?t Bayreuth, Lehrstuhl für Pflanzensystematik, Universit?tsstrasse 30, D-95440 Bayreuth, Germany.  相似文献   

18.
19.
Phylogenetic systematic analysis of 24 taxa representing the rhabdocoel platyhelminths, based on a suite of 89 morphological characters, produced two equally parsimonious trees, 181 steps long, with a consistency index (CI) of 0.69 and a rescaled consistency index (RCI) of 0.56, differing only with respect to that portion of the tree containing Umagillidae, Acholadidae, Graffillinae, Pseudograffillinae, Pterastericolidae and Hypoblepharinidae. Our results accommodate all previously proposed sister taxa to the Neodermata in a single clade in which ((Dalyelliidae + Temnocephalida) Typhloplanidae) is the sister group of ((Fecampiidae +  Urastoma ) ( Udonella ((Aspidogastrea + Digenea) (Monogenea (Gyrocotylidea (Amphilinidea + Eucestoda)))))). Bootstrap and jackknife analyses indicate that the groupings of ((Dalyelliidae + Temnocephalida) Typhloplanidae) and of ((Fecampiidae +  Urastoma ) ( Udonella ((Aspidogastrea + Digenea) (Monogenea (Gyrocotylidea (Amphilinidea + Eucestoda)))))) are highly robust, with the latter clade having a CI of 90% and RCI of 82%. Disagreements among previous analyses of these taxa have been due to the influence of missing data for critical characters in key taxa and differences in the taxa analysed, rather than any inherent weakness in the morphological data. Non-phylogenetic systematic approaches to homology assessment and misconceptions regarding phylogenetic systematic methodology are discussed. Recent analyses combining sequence data with a subset of approximately 60% of the morphological characters should be re-assessed using the entire morphological database. Even if Udonella is a monogenean, it is most parsimonious to suggest that the common ancestor of the Neodermata had a vertebrate–arthropod two-host life cycle.  相似文献   

20.
Chloroplast trnL/F and nuclear ribosomal ITS and ETS sequence data were used to analyze phylogenetic relationships among members of tribe Mimuleae (Scrophulariaceae) and other closely related families in Lamiales. The results of these analyses led to the following conclusions. (1) The Australian genera Glossostigma and Peplidium and the taxonomically isolated Phryma join four genera of tribe Mimuleae to form a well-supported clade that is distinct from other families in the Lamiales. We refer to that clade as the subfamily Phrymoideae. (2) The genera Mazus and Lancea (tribe Mimuleae) together form a well-supported clade that we recognize as the subfamily Mazoideae. Mazoideae is weakly supported as sister to Phrymoideae. We assign Mazoideae and Phrymoideae to a redefined family Phrymaceae. (3) Mimulus is not monophyletic, because members of at least six other genera have been derived from within it. In light of the molecular evidence, it is clear that species of Phrymaceae (about 190 species) have undergone two geographically distinct radiations; one in western North America (about 130 species) and another in Australia (about 30 species). Phylogenetic interpretations of morphological evolution and biogeographical patterns are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号