首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Molecular size of the 5-HT3 receptor solubilized from NCB 20 cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
The 5-HT3 hydroxytryptamine receptor from NCB 20 cells was solubilized and the molecular and hydrodynamic properties of the receptor were investigated. The receptor was identified by binding of the radioligand 3-NN'-[3H]dimethyl-8-azabicyclo[3.2.1]octanyl indol-3-yl carboxylate ester [( 3H]Q ICS 205-930) to NCB 20 membranes (Bmax = 1.19 +/- 0.31 pmol/mg of protein; Kd = 0.43 +/- 0.076 nM) and was optimally solubilized with 0.5% deoxycholate. [3H]Q ICS 205-930 labelled one population of sites in solution (Bmax = 1.11 +/- 0.4 pmol/mg of protein; Kd = 0.48 +/- 0.06 nM; n = 4). The characteristics of [3H]Q ICS 205-930 binding were essentially unchanged by solubilization, and competition for [3H]Q ICS 205-930 binding by a series of 5-HT3 agonists and antagonists was consistent with binding to a 5-HT3 receptor site and was similar to that observed for 5-HT3 receptors solubilized from rat brain [McKernan, Quirk, Jackson & Ragan (1990) J. Neurochem. 54, 924-930]. Some physical properties of the solubilized receptor were investigated. The molecular size (Stokes radius) of the [3H]Q ICS 205-930-binding site was measured by gel-exclusion chromatography in a buffer containing 0.2% Lubrol and 0.5 M-NaCl and was determined as 4.81 +/- 0.15 nm (mean +/- S.E.M.; n = 6). Sucrose-density-gradient centrifugation was also performed under the same detergent and salt conditions to determine the partial specific volume (v) of the detergent-receptor site complex. This was found to be 0.794 ml.g-1. Sucrose-density-gradient centrifugation was carried out in both 1H2O and 2H2O to allow correction for detergent binding to the receptor. The Mr of the 5-HT3 receptor under these conditions was calculated as 249,000 +/- 18,000 (n = 3). The size and physical properties of the 5-HT3 receptor are similar to those observed for members of the family of ligand-gated ion channels.  相似文献   

2.
Purification of the 5-hydroxytryptamine 5-HT3 receptor from NCB20 cells   总被引:1,自引:0,他引:1  
A 5-hydroxytryptamine 5-HT3 receptor binding site has been purified from deoxycholate-solubilized NCB20 cell membranes. Purification (1,700-fold) was achieved in one step by affinity chromatography with L-685,603 immobilized on agarose. The 5-HT3 selective antagonist [3H]Q ICS 205-930 labeled a single population of receptors in the affinity-purified preparation with a Bmax of 3.1 +/- 0.9 nmol/mg protein and Kd of 0.40 +/- 0.05 nM (mean +/- S.E., n = 3). The rank order of potency for a series of competing compounds confirmed that [3H]Q ICS 205,930 was labeling a 5-HT3 receptor in the purified preparation, and the inhibition constants for all antagonists were unchanged after purification. The purified 5-HT3 binding site eluted from a Sepharose 6B gel filtration column in a similar manner to the crude solubilized preparation (Stokes radius of 4.9 nm, apparent molecular size 250,000). Polyacrylamide gel electrophoresis of the affinity-purified receptor showed two broad bands by silver staining, migrating with apparent molecular masses of 54,000 and 38,000. Gel filtration of the affinity purified material yielded a single peak labeled by [3H]Q ICS 205-930 with an apparent molecular size of 250,000, which was also composed of two bands of 54,000 and 38,000, consistent with these being the constituents of the 5-HT3 receptor.  相似文献   

3.
[3H]Quipazine was used to label binding sites in rat brain membranes that display characteristics of a 5-hydroxytryptamine3 (5-HT3) receptor. The radioligand binds with high affinity (KD, 1.2 +/- 0.1 nM) to a saturable population of sites (Bmax, 3.0 +/- 0.4 pmol/g of tissue) that are differentially located in the brain. Specific [3H]quipazine binding is not affected by guanine or adenine nucleotides. ICS 205-930, BRL 43964, Lilly 278584, and zacopride display less than nanomolar affinity for these sites whereas MDL 72222 is approximately one order of magnitude less potent. The pharmacological profile of the binding site is in excellent agreement with that of 5-HT3 receptors characterized in peripheral physiological models. We conclude that [3H]quipazine labels a 5-HT3 receptor in the rat CNS.  相似文献   

4.
In the absence of detergent, specific binding of [3H]GR65630, a 5-hydroxytryptamine3 (5-HT3) antagonist, determined in the presence of 5-HT3 receptor antagonist ICS205-930, was at most 30% of the total binding. To decrease the level of nonspecific binding, the effects of detergents on [3H]GR65630 binding to rat cortical membranes were investigated. The use of a detergent (0.1% Lubrol PX or Triton X-100) decreased nonspecific binding, increasing the proportion of specific binding to 70% of total binding. In the presence of 0.1% Triton X-100, binding of [3H]GR65630 was rapid, reversible and saturable at 25°C. The rank order of 5-HT3 receptor active drugs in inhibiting [3H]GR65630 binding was quipazine > ICS205-930 > 2-methyl-5-HT = 5-HT > metoclopramide, which confirmed that [3H]GR65630 efficiently labeled 5-HT3 receptors in the presence of Triton X-100. Triton X-100 improved 5-HT3 receptor binding with rat brain membranes.  相似文献   

5.
In the presence of 1 microM ( +/- )-pindolol [to block 5-hydroxytryptamine (5-HT, serotonin) 5-HT 1A and 5-HT 1B receptors] and 100 nM mesulergine (to block 5-HT 1C receptors), 2.0 nM [3H]5-HT binding to rat cortical homogenates is specific, saturable, and reversible. Scatchard analysis of [3H]5-HT binding, in the presence of 1 microM ( +/- )-pindolol and 100 nM mesulergine, produced a KD of 3.2 nM and Bmax of 43 fmol/mg protein. Distribution studies show this site to be present in most rat brain regions. This site is also detectable in human caudate. The pharmacological profile of this site is distinct from the previously identified 5-HT receptor subtypes. Compounds with high affinity for 5-HT 1A (8-hydroxydipropylaminotetralin), 5-HT 1B (trifluoromethylphenylpiperazine), 5-HT 1C (mesulergine), 5-HT 2 (4-bromo-2,5-dimethoxyphenylisopropylamine), and 5-HT3 (ICS 205-930) receptors have low affinity for this site. These data suggest the presence of an additional, previously unidentified, 5-HT binding site in rat and human brain tissue. This putative novel 5-HT receptor has a similar pharmacology to the "5-HT 1D" site detected in bovine brain by Heuring and Peroutka.  相似文献   

6.
J C Gordon  H C Rowland 《Life sciences》1990,46(20):1435-1442
In rat pheochromocytoma (PC12) cells, nerve growth factor (7S NGF) induced the expression of recognition sites that bind the specific 5-HT3 antagonist (S-) [3H]zacopride. Culturing PC12 cells for 8-12 days in the presence of 50 ng/ml NGF increased the density (Bmax) of (S-) [3H]zacopride binding sites in cell membranes (0-100,000 x g fraction) from 0 to 105 fmoles/mg protein. This binding exhibited high affinity for (S-) [3H]zacopride (Kd = 0.8 nM), was specific (greater than 95%), and was inhibited by 5-HT3 compounds with a rank of potency (quipazine greater than ICS 205-930 greater than GR38032F greater than BRL24924 approximately MDL 72222 greater than phenylbiguanide greater than or equal to serotonin greater than 2-methyl-serotonin greater than metoclopramide) which was distinct from neuroblastoma cells. Thus, NGF-differentiated PC12 cells possess a 5-HT3 receptor and should be useful to investigate its regulation and biochemical mechanism of action.  相似文献   

7.
Specific binding sites with pharmacological properties typical of serotonin 5-HT3 receptors were identified in membranes of the murine hybridoma cell line NG 108-15, using [3H]zacopride as a ligand. Optimal solubilization of these sites (yield, 50%) could be achieved using the detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) at 24 mM plus 0.5 M NaCl in 25 mM Tris-HCl, pH 7.4. Specific [3H]zacopride binding to soluble sites in the 100,000-g CHAPS extract was saturable and showed characteristics (Bmax = 425 +/- 81 fmol/mg of protein; KD = 0.19 +/- 0.02 nM) closely related to those of membrane-bound sites (Bmax = 932 +/- 183 fmol/mg of protein; KD = 0.60 +/- 0.03 nM). Determination of association (k+1 = 0.17 nM min-1) and dissociation (k-1 = 0.02 min-1) rate constants for the soluble sites gave a KD value of 0.12 nM, a result consistent with that calculated from saturation studies. As assessed from the displacement potencies (IC50) of 10 different drugs, the pharmacological profile of [3H]zacopride specific binding sites was essentially the same (r = 0.99) in the CHAPS-soluble extract and in cell membranes, although some increase in the affinity for 5-HT3 antagonists (zacopride, ICS 205-930, and MDL 72222) and decrease in the affinity for 5-HT3 agonists (2-methyl-5-hydroxytryptamine and phenylbiguanide) were noted for the soluble sites. Sucrose density gradient sedimentation of the CHAPS-soluble extract gave a Svedberg coefficient of 12S for the material with [3H]zacopride specific binding capacity. Chromatographic analyses using Sephacryl S-400 and wheat germ agglutinin-agarose columns indicated marked enrichment (by 2.5- and 10-fold, respectively) in [3H]zacopride specific binding activity in the corresponding eluates compared with the starting soluble extract, a finding suggesting that both steps are of potential interest for the partial purification of solubilized 5-HT3 receptors. Two soluble materials with apparent molecular masses of approximately 600 and approximately 36 kDa were found to bind [3H]zacopride specifically in the Sephacryl S-400 eluate. Interestingly, molecular mass determination by radiation inactivation of [3H]zacopride binding sites in frozen NG 108-15 cells gave a value of approximately 35 kDa.  相似文献   

8.
5-Hydroxytryptamine (5-HT) displays a sixfold higher affinity for 5-HT2 binding sites labeled by [3H]ketanserin in rat (IC50 = 200 +/- 40 nM) and human (IC50 = 190 +/- 50 nM) cortex than for 5-HT2 sites in bovine cortex (IC50 = 1,200 +/- 130 nM). The Hill slopes of the 5-HT competition curves are 0.67 +/- 0.04 in rat, 0.69 +/- 0.08 in human, and 0.96 +/- 0.02 in bovine cortex. Scatchard analysis of (+/-)-[3H]4-bromo-2,5-dimethoxyamphetamine ([3H]DOB) binding in the rat indicates a population of binding sites with a KD of 0.38 +/- 0.04 nM and a Bmax of 1.5 +/- 0.05 pmol/g tissue. In contrast, specific [3H]DOB binding cannot be detected in bovine cortical membranes. These data indicate that species variations exist in 5-HT2 binding site subtypes and that [3H]ketanserin appears to label a homogeneous population of 5-HT2 binding site subtypes in bovine cortex.  相似文献   

9.
The role of 5-HT3 receptors in the biphasic vasodilator response to serotonin (5-hydroxytryptamine; 5-HT) was investigated in the forearm of 7 young healthy volunteers (aged 22-32 years). Single dose infusions of 5-HT (1 ng/kg/min) and of acetylcholine (ACh, 500 ng/kg/min) were administered into the brachial artery. Subsequently combined infusions of 5-HT together with the selective 5-HT3 receptor antagonist ICS 205-930 (350 and 700 ng/kg/min), and ACh together with ICS 205-930 (700 ng/kg/min) were given. After a pause of at least 1 hour the single infusions of 5-HT and ACh were repeated. Subsequently, 5-HT and ACh were infused together with atropine (100 ng/kg/min). Forearm blood flow (FBF) was measured by R-wave triggered venous occlusion plethysmography. Heart rate (HR) and i.a. blood pressure (BP) were recorded semi-continuously. None of the drugs in the doses used did induce systemic hemodynamic effects. After an initial rapid transient increase in FBF of 316 +/- 55%, 5-HT elicited a persistent increase in FBF of 90 +/- 22% (mean +/- SEM, p less than 0.05 for both). ACh induced a monophasic vasodilatation of 475 +/- 123% (p less than 0.05). Both the initial transient and the persistent dilatator response to 5-HT were attenuated by ICS 205-930 350 ng/kg/min (p = 0.057, n = 5) and 700 ng/kg/min (p less than 0.05, n = 7). The highest dose of ICS 205-930 did not significantly influence the dilatator response to ACh. Atropine abolished the ACh induced vasodilatation (p less than 0.05), but did not influence the biphasic dilatator response to 5-HT. Thus the 5-HT induced biphasic vasodilatation was antagonized by ICS 205-930, indicating that this response was mediated by 5-HT3 receptor activation. The fact that atropine did not influence the vascular response to 5-HT suggests that 5-HT did not induce vascular relaxation indirectly by the release of ACh from cholinergic nerve endings.  相似文献   

10.
Drug interactions with 5-HT1 (5-hydroxytryptamine type 1) binding site subtypes were analyzed in rat frontal cortex. 8-Hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) displays high affinity (Ki 3.3 +/- 1 nM) for 29 +/- 3% of total [3H]5-HT binding in rat frontal cortex and low affinity (Ki 9,300 +/- 1,000) for 71 +/- 4% of the remaining 5-HT1 sites. Therefore, non-5-HT1A binding in rat frontal cortex was defined as specific [3H]5-HT binding observed in the presence of 100 nM 8-OH-DPAT. 5-Methoxy 3-(1,2,3,6-tetrahydro-4-pyridinyl) 1 H indole (RU 24969), 1-(m-trifluoromethylphenyl)piperazine (TFMPP), mianserin, and methysergide produce shallow competition curves of [3H]5-HT binding from non-5-HT1A sites. Addition of 10(-3) M GTP does not increase the apparent Hill slopes of these competition curves. Computer-assisted iterative curve fitting suggests that these drugs can discriminate two distinct subpopulations of non-5-HT1A binding sites, each representing approximately 35% of the total [3H]5-HT binding in the rat frontal cortex. All three 5-HT1 binding site subtypes display nanomolar affinity for 5-HT and 5-methoxytryptamine. A homogeneous population of 5-HT1A sites can be directly labeled using [3H]8-OH-DPAT. These sites display nanomolar affinity for 8-OH-DPAT, WB 4101, RU 24969, 2-(4-[4-(2-pyrimidinyl)-1-piperazinyl] butyl)-1,2-benzisothiazol-3-(2H)one-1, 1-dioxidehydrochloride (TVX Q 7821), 5-methoxydimethyltryptamine, and d-lysergic acid diethylamide. The potencies of RU 24969, TFMPP, and quipazine for [3H]5-HT binding are increased by addition of 100 nM 8-OH-DPAT and 3,000 nM mianserin to the [3H]5-HT binding assay. Moreover, the drugs have apparent Hill slopes near 1 under these conditions. This subpopulation of total [3H]5-HT binding is designated 5-HT1B. By contrast, methysergide and mianserin become more potent inhibitors of residual [3H]5-HT binding to non-5-HT1A sites in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969. The drug competition curves under these conditions have apparent Hill slopes of near unity and these sites are designated 5-HT1C. Drug competition studies using a series of 24 agents reveals that each 5-HT1 subtype site has a unique pharmacological profile. These results suggest that radioligand studies can be used to differentiate three distinct subpopulations of 5-HT1 binding sites labeled by [3H]5-HT in rat frontal cortex.  相似文献   

11.
Radioligand binding studies were performed to characterize serotonin 5-HT1D receptors in postmortem human prefrontal cortex and caudate homogenates. [3H]5-HT binding, in the presence of pindolol (to block 5-HT1A and 5-HT1B receptors) and mesulergine (to block 5-HT1C receptors), was specific, saturable, reversible, and of high affinity. Scatchard analyses of [3H]5-HT-labeled 5-HT1D sites in human prefrontal cortex produced a KD value of 4.2 nM and Bmax of 126 fmol/mg protein. In competition experiments, 8-hydroxydipropylaminotetralin, trifluoromethylphenylpiperazine, mesulergine, 4-bromo-2,5-dimethoxyphenylisopropylamine, and ICS 205-930 had low affinity for [3H]5-HT-labeled 5-HT1D sites, indicating that the pharmacology of the 5-HT1D site is distinct from that of previously identified 5-HT1A, 5-HT1B, 5-HT1C, 5-HT2, and 5-HT3 sites. 5-HT1D sites in human brain have a similar pharmacology to the 5-HT1D sites previously identified in rat, porcine and bovine brains. Guanyl nucleotides, guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and guanosine 5'-(beta, gamma-imido)-triphosphate (Gpp(NH)p), modulated the binding of [3H]5-HT to 5-HT1D sites, whereas adenyl nucleotides had no effect. These findings are supportive of the presence of serotonin 5-HT1D receptors in human prefrontal cortex and caudate which appear to be coupled to a GTP binding protein.  相似文献   

12.
The N-methyl-D-aspartate (NMDA) receptor complex as defined by the binding of [3H]MK-801 has been solubilized from membranes prepared from both rat and porcine brain using the anionic detergent deoxycholate (DOC). Of the detergents tested DOC extracted the most receptors (21% for rat, 34% for pig), and the soluble complex, stabilized by the presence of MK-801, could be stored for up to 1 week at 4 degrees C with less than 25% loss in activity. Receptor preparations from both species exhibited [3H]MK-801 binding properties in solution very similar to those observed in membranes (Bmax = 485 +/- 67 fmol/mg of protein, KD = 11.5 +/- 2.9 nM in rat; Bmax = 728 +/- 108 fmol/mg of protein, KD = 7.1 +/- 1.6 nM in pig, n = 3). The pharmacological profile of the solubilized [3H]MK-801 binding site was virtually identical to that observed in membranes. The rank order of potency of: MK-801 greater than (-)-MK-801 = thienylcyclohexylpiperidine greater than dexoxadrol greater than SKF 10,047 greater than ketamine, for inhibition of [3H]MK-801 binding, was observed in all preparations. The receptor complex in solution exhibited many of the characteristic modulations observed in membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

14.
NCB-20 cells (neuroblastoma X fetal Chinese hamster brain hybrids) are equipped with a [3H]5-hydroxytryptamine [( 3H]5-HT) uptake system and [3H]imipramine recognition sites. Approximately 80% of the radioactivity taken up by cells incubated with [3H]5-HT was identified with 5-HT. [3H]5-HT uptake was temperature-dependent, partially sodium-dependent, saturable (Km = 7.3 +/- 0.6 microM; Vmax = 2.0 +/- 0.6 pmol/min/mg), and inhibited by clomipramine, imipramine, fluoxetine, and desipramine, but not by iprindole, mianserin, or opipramol. Lineweaver-Burk plots showed a competitive type of inhibition by imipramine and fluoxetine. [3H]5-HT uptake was not inhibited by nisoxetine or benztropine. [3H]Imipramine binding sites had a KD of 12 +/- 2 nM and a Bmax of 22 +/- 7 pmol/mg protein. The binding was sodium-sensitive although to a lesser extent than that found with brain membranes. Imipramine binding was displaced by tricyclic antidepressants with the following order of potency: clomipramine greater than imipramine greater than fluoxetine greater than desipramine much greater than iprindole = mianserin greater than opipramol. These results suggest that imipramine binding sites are present together with the 5-HT uptake sites in NCB-20 cells and that these sites interact functionally but are different biochemically.  相似文献   

15.
Abstract

[3H]ICS 205–930 labelled 5-HT3 recognition sites in membranes prepared from murine neuroblastoma N1E-115 cells. Binding was rapid, reversible, saturable and stereoselective to an apparently homogeneous population of sites. Kinetic studies revealed that agonists and antagonists produced a monophasic dissociation reaction of [3H]ICS 205–930 from its recognition sites. The dissociation rate constant of the radioligand was similar whether the dissociation was induced by an agonist or an antagonist. Competition studies carried out with agonists and antagonists also suggested the presence of a homogeneous population of [3H]ICS 205–930 recognition sites. Competition curves were best fit for a 1 site model. [3H]ICS 205–930 binding sites displayed the pharmacological profile of a 5-HT3 receptor. The interactions of agonists and antagonists with [3H]ICS 205–930 recognition sites were apparently competitive in nature, as demonstrated in kinetic and equilibrium experiments. In saturation experiments carried out with [3H]ICS 205–930 in the presence and the absence of unlabelled agonists and antagonists, apparent Bmax values were not reduced whereas apparent Kd values were increased in the presence of competing ligands. There was a good agreement between apparent pKB values calculated for the competing ligands in saturation experiments and pKd values calculated from competition experiments. The present data demonstrate that [3H]ICS 205–930 labels a homogeneous population of sites at which agonists and antagonists interact competitively.  相似文献   

16.
The binding of [3H]5-hydroxytryptamine (5-HT, serotonin) to cerebellar membranes was examined after preincubation of [3H]5-HT in the presence or absence of ascorbate. The tissue preparation was identical in all experiments and consisted of rat cerebellar homogenates in Tris-HCl buffer with 0.1% ascorbate. Cerebellar membranes were used because of their low density of 5-HT1 binding sites. In the presence of ascorbate during a 4-h preincubation period, minimal specific binding of 2 nM [3H]5-HT is detected. Similar results are obtained with equimolar concentrations of other antioxidants (butylated hydroxytoluene, sodium dithionite, and sodium metabisulfite). Apparent specific binding increases 14-fold following a 4-h preincubation of [3H]5-HT in the absence of ascorbate. The increase in apparent specific [3H]5-HT binding is time-dependent and plateaus after 4-6 h of preincubation. When ascorbate is present during the 4-h preincubation, Scatchard analysis of [3H]5-HT binding reveals a KD value of 3.0 +/- 0.3 nM and a Bmax value of 1.9 +/- 0.2 pmol/g tissue. When ascorbate is absent during the preincubation, the KD is essentially unchanged at 3.6 +/- 0.1 nM but the Bmax is significantly increased to 36.5 +/- 7 pmol/g tissue. Drug competition studies reveal that the apparent specific "[3H]5-HT binding" in the absence of ascorbate appears to be displaced by nanomolar concentrations of hydroxylated tryptamines (5-HT, bufotenine) but not by nonhydroxylated tryptamines (5-methoxytryptamine, tryptamine). HPLC analysis demonstrates that [3H]5-HT is essentially destroyed by a 4-h incubation at 22 degrees C in the absence of ascorbate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Serotonin1 (5-hydroxytryptamine1, 5-HT1) binding sites have been solubilized from bovine brain cortex using a mixture of 0.1% Nonidet P-40 and 0.3% digitonin in a low-salt buffer containing 0.1% ascorbic acid. The affinity of [3H]5-HT for the soluble cortical binding sites (2.1 nM) is identical to its affinity at membrane-bound binding sites (2.1 nM). [3H]8-Hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT), a selective 5-HT1a radioligand, also binds to soluble cortical binding sites with high affinity (1.8 nM) comparable with its affinity in the crude membranes (1.7 nM). A significant correlation exists in the rank order potency of serotonergic agents for [3H]5-HT binding and for [3H]DPAT binding to crude and soluble membranes. The density of [3H]DPAT binding sites relative to the [3H]5-HT sites in the solubilized cortical membranes (35%) corresponds well with the proportion of 5-HT1a sites in the crude membranes determined by spiperone displacement (33%), suggesting that both the 5-HT1a and 5-HT1b binding sites have been cosolubilized. [3H]5-HT binding in the soluble preparations was inhibited by GTP, suggesting that a receptor complex may have been solubilized. [3H]Spiperone-specific binding was not detectable in this preparation, suggesting that 5-HT2 sites were not cosolubilized.  相似文献   

18.
1-[2-(4-Azidophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (p-azido-PAPP) inhibits [3H]5-hydroxytryptamine [( 3H]5-HT) binding to 5-HT1A and 5-HT1B sites in rat brain with equilibrium dissociation constants (KD) of 0.9 nM and 230 nM, respectively. [3H]p-Azido-PAPP was synthesized and its reversible and irreversible binding properties to the hippocampal 5-HT1A site characterized. [3H]p-Azido-PAPP labeled a single class of sites in rat hippocampal membranes with a KD of 1 nM and a maximal binding density of 370 fmol/mg protein. The pharmacological profile of [3H]p-azido-PAPP binding was consistent with the radioligand's selective interaction with the 5-HT1A receptor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membranes preincubated with [3H]p-azido-PAPP and irradiated showed a major band of incorporation of radioactivity at approximately 55,000 daltons. This incorporation could be blocked when membranes were incubated with 1 microM of several agents that have high affinity for 5-HT1A sites [5-HT, 8-hydroxy-2-(di-n-propylamino)tetraline, TVX Q 7821, spiperone, buspirone, d-lysergic acid diethylamide, metergoline]. The results indicate that on photolysis [3H]p-azido-PAPP irreversibly labels a polypeptide that is, or is a subunit of, the 5-HT1A receptor in rat hippocampus.  相似文献   

19.
Three pharmacologically distinct high-affinity [3H]serotonin ([3H]5-HT) binding sites were identified in spinal cord synaptosomes. [3H]5-HT competition studies using selective 5-HT1A receptor ligands indicated that approximately 25% of high-affinity synaptosomal [3H]5-HT binding was inhibited by 5-HT1A-selective compounds, an estimate consistent with [3H](+-)-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) saturation experiments in which 5-HT1A receptors were directly labeled. [3H]5-HT competition studies using high-affinity 5-HT1B compounds performed in the presence of 100 nM 8-OH-DPAT (to block 5-HT1A receptors) indicated that approximately 26% of all specific, high-affinity [3H]5-HT binding to spinal cord synaptosomes was to 5-HT1B receptors. [3H]5-HT competition studies performed in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969 (to block 5-HT1A and 5-HT1B receptors, respectively) indicated that the remaining 49% of [3H]5-HT binding did not possess the pharmacologic profile previous reported for 5-HT1C, 5-HT1D, 5-HT1E, 5-HT2, or 5-HT3 receptors. This residual 49% of [3H]5-HT binding to spinal cord synaptosomes observed in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969 (subsequently referred to as "5-HT1S") displayed high affinity and saturability (KD = 4.7 nM) in association/dissociation and saturation experiments. Addition of 300 microM GTP or the nonhydrolyzable form of GTP, 5'-guanylylimidodiphosphate, inhibited [3H]5-HT binding to 5-HT1S receptors in saturation experiments by 35 and 57%, respectively, whereas ATP was without effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
[3H]Zacopride displayed regional saturable specific binding to homogenates of human brain tissues, as defined by the inclusion of BRL43694 [endo-N-(9-methyl-9-azabicyclo[3.3.1]non-3-yl)-1-methylindazole-3- carboxamide] in the incubation media. Scatchard analysis of the saturation data obtained from amygdaloid and hippocampal tissues identified the binding as being of high affinity and to a homogeneous population of binding sites (KD = 2.64 +/- 0.75 and 2.93 +/- 0.41 nmol/L and Bmax = 55 +/- 7 and 44 +/- 9 fmol/mg of protein in the amygdala and hippocampus, respectively). 5-Hydroxytryptamine 3 (5-HT3) receptor agonists and antagonists competed for the [3H]zacopride binding site, competing with up to 40% of total binding with a similar rank order of affinity in both tissues; agents acting on various other neurotransmitter receptors failed to inhibit binding. Kinetic data revealed a fast association that was fully reversible (k+1 = 6.61 X 10(5) and 7.65 X 10(5)/mol/L/s and k-1 = 3.68 X 10(-3) and 3.45 X 10(-3)/s in the amygdala and hippocampus, respectively). It is concluded that [3H]zacopride selectively labels with high affinity 5-HT3 recognition sites in human amygdala and hippocampus and, if these binding domains represent 5-HT3 receptors, may provide the opportunity for 5-HT3 receptor antagonists to modify 5-HT function in the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号