首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
2.
We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv/Fm). On the other hand, β‐carotene accumulation was positively affected by higher Fv/Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K‐0591 and R. salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.  相似文献   

3.
The effects of ABA treatment on the contents of proline, polyamines (PA), and cytokinins (CK) in the facultative halophyte the common ice plant (Mesembryanthemum crystallinum L.) subjected to salt stress were studied. Plants grown in the phytotron chamber on Jonson nutrient medium for 6 weeks were subjected to 6-day-long salinity by a single NaCl adding to medium. During first three days of salinity, half plants of each treatment were placed for 30 min on nutrient medium containing 0, 100, or 300 mM NaCl plus ABA in the final concentration of 1 μM. Salinity reduced biomass accumulation and water and chlorophyll contents in plants. This was accompanied by the increase in the levels of MDA, proline, and sodium ions. ABA treatment of salt-stressed plants favored biomass accumulation and photosynthetic pigment protection, reduced the intensity of oxidative stress and the level of NaCl-induced proline accumulation. ABA treatment increased the contents of putrescine (Put) and spermidine (Spd) in the leaves and roots of control plants (not subjected to salt stress), reduced the losses of Put in the leaves and roots and Spd in the roots in the presence of 100 mM NaCl, and suppressed cadaverine (Cad) accumulation in the roots in the presence of 300 mM NaCl. In the presence of NaCl, ABA reduced the contents of zeatin and zeatin riboside and increased the level of zeatin-O-glucoside in the roots and isopentenyladenosine and isopentenyladenine in the leaves. Thus, ABA protective action under salinity can be realized through the weakening of oxidative stress (a decrease in MDA content) and the regulation of PA, proline, and CK metabolism, which has a great significance in plant adaptation to injurious factors.  相似文献   

4.
Early changes in physiological and oxidative status induced by salt stress were monitored in two Brassicaceae plants differing in their tolerance to salinity, Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Growth response and antioxidant defense of C. maritima under 400 mM NaCl were compared with those of A. thaliana exposed to 100 mM NaCl. Salinity induced early growth reduction that is less pronounced in C. maritima than in A. thaliana. Maximum hydrogen peroxide (H2O2) level occurred in the leaves of both species 4 h after the onset of salt treatment. A rapid decline in H2O2 concentration was observed thereafter in C. maritima, whereas it remained high in A. thaliana. Correlatively, superoxide dismutase, catalase and peroxidase activities increased at 4 h of treatment in C. maritima and decreased thereafter. However, the activity of these enzymes remained higher in treated plants than that in controls, regardless of the duration of treatment, in A. thaliana. The concentrations of malondialdehyde (MDA) reached maximum values at 24 h of salt stress in both species. Again, MDA levels decreased later in C. maritima, but remained high in A. thaliana. The contents of α‐tocopherol remained constant during salt stress in C. maritima and decreased during the first 24 h of salt stress and then remained low in A. thaliana. The results clearly showed that C. maritima, in contrast to A. thaliana, can rapidly evolve physiological and antioxidant mechanisms to adapt to salt and manage the oxidative stress. This may explain, at least partially, the difference in salt tolerance between halophytes and glycophytes.  相似文献   

5.
Hydroponic experiments were carried out using seedlings of the wetland halophyte species Kosteletzkya virginica (L.) Presl. exposed to 10???M Cd or 100???M Zn in the absence or presence of 50?mM NaCl. Interaction between salinity and heavy metals was analysed in relation to plant growth, water status and tissue ion contents (Na, K and Ca). Results showed a strong inhibition effect of Cd on leaf emergence, lateral branch development and leaf expansion. Heavy metals induced a significant decrease in plant dry weight, water content, osmotic potential (?? S) and leaf water potential (?? w). Cadmium and Zn accumulated to higher extent in the roots than in the shoots. Cadmium increased the leaf K concentration while Zn had an opposite effect. Salinity strongly reduced Cd uptake and translocation from roots to shoots: it mitigated the Cd impact on lateral branch emergence but had no effects on plant dry weight and water status. Cadmium drastically reduced Na translocation in salt-treated plants while Zn increased it. It is concluded that complex interactions exist between heavy metals and monovalent cations in salt conditions and that Cd and Zn display contrasting behaviour in this respect. Stress-induced modification of ion content did not fully explain growth inhibition in Kosteletzkya virginica.  相似文献   

6.
We investigated the role of cyclic electron flow around photosystem 1 (CEF1) and state transition (ST) in two soybean cultivars that differed in salt tolerance. The CEF1 and maximum photochemical efficiency (Fv/Fm) were determined under control and NaCl (50 mM) stress and the NaCl-induced light-harvesting complex 2 (LHC2) phosphorylation in vitro was analysed in light and dark. NaCl induced the increase of CEF1 more greatly in wild soybean Glycine cyrtoloba (cv. ACC547) than in cultivated soybean Glycine max (cv. Melrose). The Fv/Fm was reduced less in G. cyrtoloba than in G. max after 10-d NaCl stress. In G. cyrtoloba, the increase of CEF1 was associated with enhancement of LHC2 phosphorylation in thylakoid membrane under both dark and light. However, in G. max the NaCl treatment decreased the LHC2 phosphorylation. Treatment with photosynthetic electron flow inhibitors (DCMU, DBMIB) inhibited LHC2 phosphorylation more in G. max than in G. cyrtoloba. Thus the NaCl-induced up-regulation in CEF1 and ST might contribute to salt resistance of G. cyrtoloba.  相似文献   

7.
Thermotolerance of photosynthesis in salt‐adapted Atriplex centralasiatica plants (100–400 mm NaCl) was evaluated in this study after detached leaves and whole plants were exposed to high temperature stress (30–48 °C) either in the dark or under high light (1200 mol m?2 s?1). In parallel with the decrease in stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate decreased significantly with increasing salt concentration. There was no change in the maximal efficiency of PSII photochemistry (Fv/Fm) with increasing salt concentration, suggesting that there was no damage to PSII in salt‐adapted plants. On the other hand, there was a striking difference in the response of PSII and CO2 assimilation capacity to heat stress in non‐salt‐adapted and salt‐adapted leaves. Leaves from salt‐adapted plants maintained significantly higher Fv/Fm values than those from non‐salt‐adapted leaves at temperatures higher than 42 °C. The Fv/Fm differences between non‐salt‐adapted and salt‐adapted plants persisted for at least 24 h following heat stress. Leaves from salt‐adapted plants also maintained a higher net CO2 assimilation rate than those in non‐salt‐adapted plants at temperatures higher than 42 °C. This increased thermotolerance was independent of the degree of salinity since no significant changes in Fv/Fm and net CO2 assimilation rate were observed among the plants treated with different concentrations of NaCl. The increased thermotolerance of PSII induced by salinity was still evident when heat treatments were carried out under high light. Given that photosynthesis is considered to be the physiological process most sensitive to high temperature damage, increased thermotolerance of photosynthesis may be of significance since A. centralasiatica, a typical halophyte, grows in the high salinity regions in the north of China, where the temperature in the summer is often as high as 45 °C.  相似文献   

8.
The γ‐tocopherol methyltransferase (γ‐TMT) is an important enzyme regulating synthesis of four tocopherols (α, γ, β and δ). In this report, we investigated the role of γ‐TMT in regulating abiotic stress within chloroplasts. The At γ‐tmt overexpressed via the tobacco chloroplast genome accumulated up to 7.7% of the total leaf protein, resulting in massive proliferation of the inner envelope membrane (IEM, up to eight layers). Such high‐level expression of γ‐TMT converted most of γ‐tocopherol to α‐tocopherol in transplastomic seeds (~10‐fold higher) in the absence of abiotic stress. When grown in 400 mm NaCl, α‐tocopherol content in transplastomic TMT leaves increased up to 8.2‐fold and 2.4‐fold higher than wild‐type leaves. Likewise, under heavy metal stress, α‐tocopherol content in the TMT leaves increased up to 7.5‐fold, twice higher than in the wild type. Under extreme salt stress, the wild type accumulated higher starch and total soluble sugars, but TMT plants were able to regulate sugar transport. Hydrogen peroxide and superoxide content in wild type increased up to 3‐fold within 48 h of NaCl stress when compared to TMT plants. The ion leakage from TMT leaves was significantly less than wild‐type plants under abiotic stress and with less malondialdehyde, indicating lower lipid peroxidation. Taken together, these studies show that α‐tocopherol plays a crucial role in the alleviation of salt and heavy metal stresses by decreasing ROS, lipid peroxidation and ion leakage, in addition to enhancing vitamin E conversion. Increased proliferation of the IEM should facilitate studies on retrograde signalling from chloroplast to the nucleus.  相似文献   

9.
Jin Xu  Hengxia Yin  Xiaojing Liu  Xia Li 《Planta》2010,231(2):449-459
Cadmium contamination is a serious environmental problem for modern agriculture and human health. Salinity affects plant growth and development, and interactions between salt and cadmium have been reported. However, the molecular mechanisms of salinity–cadmium interactions are not fully understood. Here, we show that a low concentration of salt alleviates Cd-induced growth inhibition and increases Cd accumulation in Arabidopsis thaliana. Supplementation with low concentrations of salt reduced the reactive oxygen species level in Cd-stressed roots by increasing the contents of proline and glutathione and down-regulating the expression of RCD1, thereby protecting the plasma membrane integrity of roots under cadmium stress. Salt supplementation substantially reduces the Cd-induced elevation of IAA oxidase activity, thereby maintaining auxin levels in Cd-stressed plants, as indicated by DR5::GUS expression. Salt supply increased Cd absorption in roots and increased Cd accumulation in leaves, implying that salt enhances both Cd uptake in roots and the root-to-shoot translocation of Cd. The elevated Cd accumulation in plants in response to salt was found to be correlated with the elevated levels of phytochelatin the expression of heavy metal transporters AtHMA1-4, especially AtHMA4. Salt alleviated growth inhibition caused by Cd and increased Cd accumulation also was observed in Cd accumulator Solanum nigrum.  相似文献   

10.
  • Cadmium (Cd) is detrimental to crops and the environment. This work examines the natural mechanisms underlying silicon‐ (Si‐)directed Cd detoxification in rice plants.
  • The addition of Si to plants under Cd stress caused significant improvements in morphological parameters, chlorophyll score, Fv/Fm and total soluble protein concentration compared to controls, confirming that Si is able to ameliorate Cd‐induced damage in rice plants. This morpho‐physiological evidence was correlated with decreased cell death and electrolyte leakage after Si application.
  • The results showed no critical changes in root Cd concentration, while shoot Cd decreased significantly after Si supplementation in comparison with Cd‐stressed rice. Additionally, expression of Cd transporters (OsNRAMP5 and OsHMA2) was significantly down‐regulated while the concentration of phytochelatin, cysteine and glutathione, together with expression of OsPCS1 (phytochelatin synthase) in roots of Cd‐stressed rice was significantly induced when subjected to Si treatment. This confirms that the alleviation of Cd stress is not only limited to the down‐regulation of Cd transporters but also closely related to the phytochelatin‐driven vacuolar storage of Cd in rice roots.
  • The enzymatic analysis further revealed the role of SOD and GR enzymes in protecting rice plants from Cd‐induced oxidative harm. These findings suggest a mechanistic basis in rice plants for Si‐mediated mitigation of Cd stress.
  相似文献   

11.
The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non‐germinated (NG) seeds treated (+GA3) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1‐aminocyclopropane‐1‐carboylic acid (ACC) decreased after imbibition. In addition, α‐tocopherol and α‐tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).  相似文献   

12.
One-year old sweet almond (Prunus dulcis) seedlings were submitted to four levels of salt stress induced by NaCl, namely 0.3, 0.5, 0.7, and 1.0 S m−1. Effects of salt stress on a range of chlorophyll (Chl) fluorescence parameters (Chl FPs) and Chl contents were investigated in order to establish an eco-physiological characterization of P. dulcis to salinity. Salt stress promoted an increase in F0, Fs, and F0/Fm and a decrease in Fm, F′m, Fv/Fm, qP, ΔF/F′m, Fv/F0, and UQF(rel), in almost all Chl fluorescence yields (FY) and FPs due to its adverse effect on activity of photosystem 2. No significant changes were observed for quenchings qN, NPQ, and qN(rel). The contents of Chl a and b and their ratio were also significantly reduced at increased salt stress. In general, adverse salinity effects became significant when the electric conductivity of the nutrient solution (ECn) exceeded 0.3 S m−1. The most sensitive salt stress indicators were Fv/F0 and Chl a content, and they are thus best used for early salt detection in P. dulcis. Monitoring of a simple Chl FY, such as F0, also gave a good indication of induced salt stress due to the significant correlations observed between the different Chl FYs and FPs. Even essential Chl FYs, like F0, Fm, F′m, and Fs, and mutually independent Chl FPs, like Fv/F0 and qP, were strongly correlated with each other.  相似文献   

13.
Indoleamines regulate a variety of physiological functions during the growth, morphogenesis and stress‐induced responses in plants. Present investigations report the effect of NaCl stress on endogenous serotonin and melatonin accumulation and their differential spatial distribution in sunflower (Helianthus annuus) seedling roots and cotyledons using HPLC and immunohistochemical techniques, respectively. Exogenous serotonin and melatonin treatments lead to variable effect on hypocotyl elongation and root growth under NaCl stress. NaCl stress for 48 h increases endogenous serotonin and melatonin content in roots and cotyledons, thus indicating their involvement in salt‐induced long distance signaling from roots to cotyledons. Salt stress‐induced accumulation of serotonin and melatonin exhibits differential distribution in the vascular bundles and cortex in the differentiating zones of the primary roots, suggesting their compartmentalization in the growing region of roots. Serotonin and melatonin accumulation in oil body rich cells of salt‐treated seedling cotyledons correlates with longer retention of oil bodies in the cotyledons. Present investigations indicate the possible role of serotonin and melatonin in regulating root growth during salt stress in sunflower. Effect of exogenous serotonin and melatonin treatments (15 μM) on sunflower seedlings grown in the absence or presence of 120 mM NaCl substantiates their role on seedling growth. Auxin and serotonin biosynthesis are coupled to the common precursor tryptophan. Salt stress‐induced root growth inhibition, thus pertains to partial impairment of auxin functions caused by increased serotonin biosynthesis. In seedling cotyledons, NaCl stress modulates the activity of N‐acetylserotonin O‐methyltransferase (HIOMT; EC 2.1.1.4), the enzyme responsible for melatonin biosynthesis from N‐acetylserotonin.  相似文献   

14.
The effects of 10 mM putrescine (Put) treated by spraying on leaves on growth, chlorophyll content, photosynthetic gas-exchange characteristics, and chlorophyll fluorescence were investigated by growing cucumber plants (Cucumis sativus L. cv. ChangChun mici) using hydroponics with or without 65 mM NaCl as a salt stress. Salt stress caused the reduction of growth such as leaf area, root volume, plant height, and fresh and dry weights. Furthermore, net photosynthesis rate (P n), stomatal conductance (g s), intercellular CO2 concentration (C i), and transpiration rate (T r) were also reduced by NaCl, but water use efficiency (WUE; P n/T r) showed a tendency to be enhanced rather than reduced by NaCl. However, Put alleviated the reduction of P n by NaCl, and showed a further reduction of C i by NaCl. The reduction of g s and T r by NaCl was not alleviated at all. The enhancement of WUE by NaCl was shown to have no alleviation at day 1 after starting the treatment, but after that, the enhancement was gradually reduced till the control level. Maximum quantum efficiency of PSII (F v/F m) showed no effects by any conditions based on the combination of NaCl and Put, and in addition, kept constant values in plants grown in each nutrient solution during this experimental period. The efficiency of excitation energy capture by open photosystem II (PSII) (F v′/F m′), actual efficiency of PSII (ΦPSII), and the coefficient on photochemical quenching (qP) of plants with NaCl were reduced with time, and the reduction was alleviated till the control level by treatment with Put. The F v′/F m′, ΦPSII, and qP of plants without NaCl and/or with Put showed no variation during the experiment. Non-photochemical quenching of the singlet excited state of chlorophyll a (NPQ) showed quite different manner from the others as mentioned above, namely, continued to enhance during the experiment.  相似文献   

15.
This study assessed the implication of oxidative stress in the mortality of cells of Microcystis aeruginosa Kütz. Cultures grown at 25°C were exposed to 32°C, darkness, and hydrogen peroxide (0.5 mM) for 96 h. The cellular abundance, chl a concentration and content, maximum photochemical efficiency of PSII (Fv/Fm ratio), intracellular oxidative stress (determined with dihydrorhodamine 123 [DHR]), cell mortality (revealed by SYTOX‐labeling of DNA), and activation of caspase 3–like proteins were assessed every 24 h. The presence of DNA degradation in cells of M. aeruginosa was also assessed using a terminal deoxynucletidyl transferase‐mediated dUTP nick end labeling (TUNEL) assay at 96 h. Transferring cultures from 25°C to 32°C was generally beneficial to the cells. The cellular abundance and chl a concentration increased, and the mortality remained low (except for a transient burst at 72 h) as did the oxidative stress. In darkness, cells did not divide, and the Fv/Fm continuously decreased with time. The slow increase in intracellular oxidative stress coincided with the activation of caspase 3–like proteins and a 15% and 17% increase in mortality and TUNEL‐positive cells, respectively. Exposure to hydrogen peroxide had the most detrimental effect on cells as growth ceased and the Fv/Fm declined to near zero in less than 24 h. The 2‐fold increase in oxidative stress matched the activation of caspase 3–like proteins and a 40% and 37% increase in mortality and TUNEL‐positive cells, respectively. These results demonstrate the implication of oxidative stress in the stress response and mortality of M. aeruginosa.  相似文献   

16.
The relationship between drought, oxidative stress and leaf senescence was evaluated in field‐grown sage (Salvia officinalis L.), a drought‐susceptible species that shows symptoms of senescence when exposed to stress. Despite the photoprotection conferred by the xanthophyll cycle, drought‐stressed senescing leaves showed enhanced lipid peroxidation, chlorophyll loss, reduced photosynthetic activity and strong reductions of membrane‐bound chloroplastic antioxidant defences (i.e. β‐carotene and α‐tocopherol), which is indicative of oxidative stress in chloroplasts. H2O2 accumulated in drought‐stressed senescing leaves. Subcellular localization studies showed that H2O2 accumulated first in xylem vessels and the cell wall and later in the plasma membrane of mesophyll cells, but not in chloroplasts, indicating reactive oxygen species other than H2O2 as direct responsible for the oxidative stress observed in the chloroplasts of drought‐stressed senescing leaves. The strong degradation of β‐carotene and α‐tocopherol suggests an enhanced formation of singlet oxygen as the putative reactive oxygen species responsible for oxidative stress to senescing chloroplasts. This study demonstrates that oxidative stress in chloroplasts mediates drought‐induced leaf senescence in sage growing in Mediterranean field conditions.  相似文献   

17.
Possible involvement of calcium (Ca) and zinc (Zn) in mitigation of salt (NaCl) stress-induced oxidative damage in Brassica juncea was investigated. Salt stress (200?mM NaCl) reduced leaf pigment synthesis and some key photosynthetic attributes including stomatal conductance and internal CO2 concentration. Exogenous application of Ca and Zn resulted in enhanced growth possibly by induction of the antioxidant defense system, resulting in improved redox state thereby favoring growth improvement. Proline accumulation (3.39-fold) was stimulated by exogenous application of Zn and Ca causing improvement in growth through enhancement in relative water content (78.46%) and increased flavonoid accumulation (86.19%). NaCl stress enhanced the hydrogen peroxide (H2O2), malondialdehyde and methylglyoxal content by 3-fold, 1.51-fold, and 2.98-fold, respectively, however, supplementation of Ca and Zn individually as well as in combination reduced the accumulation to an appreciable level. Ca and Zn treatment helped Brassica juncea plants to strengthen the antioxidant system and glyoxalase system and also enzymes of ascorbate-glutathione (AsA-Glu) cycle for better protection to membranes from reactive oxygen species. Moreover, Ca and Zn supplementation reduced the salt-induced damage by maintaining Na/K ratio through improved K uptake.  相似文献   

18.
Salt tolerance was studied in the callus cultures of Suaeda nudiflora Moq. a dicotyledonous succulent halophyte. Growth was significantly inhibited at 50, 100, 150 and 200 mM NaCl. Inorganic ions and proline accumulated in response to salinity. Ion accumulation pattern reflected the utilization of Na+ as an osmoticum. Na+/K+ ratio rose steadily as a function of external NaCl concentration. Salt stress enhanced the activity of peroxidase, whereas it decreased activities of superoxide dismutase and catalase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Kosteletzkya virginica is a wetland halophyte that is a good candidate for rehabilitation of degraded salt marshes and production of oil as biodiesel. Salt marshes are frequently contaminated by heavy metals. The distribution of Zn in vegetative and reproductive organs of adult plants, and the NaCl influence on this distribution remain unknown and were thus explored in the present study. Plants were cultivated in a nutrient film technique system, from seedling stage until seed maturation in a control, Zn (100 μM), NaCl (50 mM) or Zn + NaCl medium. Photosynthesis, ion nutrition, malondialdehyde and non-protein thiol concentrations were quantified. Zinc distribution in reproductive organs was estimated by a laser ablation-inductively coupled plasma-mass spectrometry procedure (LA-ICP-MS). Adult plants accumulated up to 2 mg g?1 DW Zn in the shoots. Zinc reduced plant growth, inhibited photosynthesis and reduced seed yield. Zinc accumulation in the seeds was only two times higher in Zn-treated plants than in controls. Exogenous NaCl neutralized the damaging action of Zn and modified the Zn distribution through a preferential accumulation of toxic ions in older leaves. Zinc was present in seed testa, endosperm and, to a lower extent, in embryo. Additional NaCl induced a chalazal retention of Zn during seed maturation and reduced final Zn seed content. It is concluded that NaCl 50 mM had a positive impact on the response of K. virginica to Zn toxicity and acts through a modification in Zn distribution rather than a decrease in Zn absorption.  相似文献   

20.
  • Salinity is now an increasingly serious environmental issue that affects the growth and yield of many plants.
  • In the present work, the influence of inoculation with the symbiotic fungus, Piriformospora indica, on gas exchange, water potential, osmolyte content, Na/K ratio and chlorophyll fluorescence of tomato plants under three salinity levels (0, 50, 100 and 150 mm NaCl) and three time periods (5, 10 and 15 days after exposure to salt) was investigated.
  • Results indicate that P. indica inoculation improved growth parameters of tomato under salinity stress. This symbiotic fungus significantly increased photosynthetic pigment content under salinity, and more proline and glycine betaine accumulated in inoculated roots than in non‐inoculated roots. P. indica further significantly improved K+ content and reduced Na+ level under salinity treatment. After inoculation with the endophytic fungus, leaf physiological parameters, such as water potential, net photosynthesis, stomatal conductance and transpiration, were all higher under the salt concentrations and durations compared with controls without P. indica. With increasing salt level and salt treatment duration, values of F0 and qP increased but Fm, Fv/Fm, F′v/F′m and NPQ declined in the controls, while inoculation with P. indica improved these values.
  • The results indicate that the negative effects of NaCl on tomato plants were alleviated after P. indica inoculation, probably by improving physiological parameters such as water status and photosynthesis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号