首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogeny of true bugs (Hemiptera: Heteroptera), one of the most diverse insect groups in terms of morphology and ecology, has been the focus of attention for decades with respect to several deep nodes between the suborders of Hemiptera and the infraorders of Heteroptera. Here, we assembled a phylogenomic data set of 53 taxa and 3102 orthologous genes to investigate the phylogeny of Hemiptera–Heteroptera, and both concatenation and coalescent methods were used. A binode-control approach for data filtering was introduced to reduce the incongruence between different genes, which can improve the performance of phylogenetic reconstruction. Both hypotheses (Coleorrhyncha + Heteroptera) and (Coleorrhyncha + Auchenorrhyncha) received support from various analyses, in which the former is more consistent with the morphological evidence. Based on a divergence time estimation performed on genes with a strong phylogenetic signal, the origin of true bugs was dated to 290–268 Ma in the Permian, the time in Earth's history with the highest concentration of atmospheric oxygen. During this time interval, at least 1007 apomorphic amino acids were retained in the common ancestor of the extant true bugs. These molecular apomorphies are located in 553 orthologous genes, which suggests the common ancestor of the extant true bugs may have experienced large-scale evolution at the genome level.  相似文献   

2.
The higher‐level phylogeny of the order Hemiptera remains a contentious topic in insect systematics. The controversy is chiefly centred on the unresolved question of whether or not the hemipteran suborder Auchenorrhyncha (including the extant superfamilies Fulgoroidea, Membracoidea, Cicadoidea and Cercopoidea) is a monophyletic lineage. Presented here are the results of a multilocus molecular phylogenetic investigation of relationships among the major hemipteran lineages, designed specifically to address the question of Auchenorrhyncha monophyly in the context of broad taxonomic sampling across Hemiptera. Phylogenetic analyses (maximum parsimony, maximum likelihood and Bayesian inference) were based on DNA nucleotide sequence data from seven gene regions (18S rDNA, 28S rDNA, histone H3, histone 2A, wingless, cytochrome c oxidase I and NADH dehydrogenase subunit 4) generated from 86 in‐group exemplars representing all major lineages of Hemiptera (plus seven out‐group taxa). All combined analyses of these data recover the monophyly of Auchenorrhyncha, and also support the monophyly of each of the following lineages: Hemiptera, Sternorrhyncha, Heteropterodea, Heteroptera, Fulgoroidea, Cicadomorpha, Membracoidea, Cercopoidea and Cicadoidea. Also presented is a review of the major lines of morphological and molecular evidence for and against the monophyly of Auchenorrhyncha.  相似文献   

3.
4.
Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses.  相似文献   

5.
Phylogenetic relationships among three paraneopteran clades (Psocodea, Hemiptera and Thysanoptera) were analysed based on the morphology of forewing base structure. Monophyly of Paraneoptera was supported by nine autapomorphies, monophyly of Condylognatha (= Thysanoptera + Hemiptera) by two autapo‐ morphies, monophyly of Thysanoptera by five autapomorphies and monophyly of Hemiptera by one autapomorphy. Thus, (Psocodea + (Thysanoptera + Hemiptera)) were proposed to be the phylogenetic relationships within Paraneoptera. A homoplastic similarity of the third axillary sclerite was observed between Thysanoptera and Heteroptera, and a possible evolutionary factor providing this homoplasy was discussed. The present analysis also suggested a monophyletic Auchenorrhyncha, and reduction of the proximal median plate was considered as an autapomorphy of this clade.  相似文献   

6.
The newly sequenced complete mitochondrial genome of the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a circular molecule of 16,518 bp with a total A+T content of 76.4% and two extensive repeat regions in A+T rich region. Nucleotide composition and codon usage of H. halys are about average when compared with values observed in 19 other published hemipteran mitochondrial genomes. Phylogenetic analyses using these 20 hemipteran mitochondrial genomes support the currently accepted hypothesis that suborders Heteroptera and Auchenorrhyncha form a monophyletic group. The mitochondrial gene arrangements of the 20 genomes are also consistent with our results.  相似文献   

7.
The phylogenetic placement of the moss bugs (Insecta: Hemiptera: Coleorrhyncha) has been highly controversial. Many apparent morphological apomorphies support the close relationship between Coleorrhyncha and Heteroptera (=true bugs). However, a recent phylogenomic study strongly supported a sister group relationship between Coleorrhyncha and Auchenorrhyncha (planthoppers, leafhoppers, treehoppers, spittlebugs, and cicadas). To test these two alternative hypotheses, we examined the fore‐ and hindwing base structure of the only known extant macropterous species of Coleorrhyncha using binocular and confocal laser scanning microscopes and analyzed the data selected from the wing base phylogenetically. When full morphological data including the wing base characters were analyzed, the sister group relationship between Coleorrhyncha + Heteroptera was supported, agreeing with previous consensus based on morphology. In contrast, when only wing base characters were analyzed separately, the clade Coleorrhyncha + Auchenorrhyncha was recovered, in agreement with the result from the phylogenomic study. The membranous condition of the proximal median plate in the forewing was identified as a potential synapomorphy of the latter grouping, and the absence of the tegula was excluded as a potential synapomorphy of Coleorrhyncha and Heteroptera.  相似文献   

8.
The higher‐level phylogeny of Pentatomomorpha, the second largest infraorder of true bugs (Hemiptera: Heteroptera), which includes many important agriculture and forestry pests, has been debated for decades. To investigate the phylogeny and evolutionary history of Pentatomomorpha, we assembled new mitochondrial genomes for 46 species through next‐generation sequencing of pooled genomic DNA. Based on a much broader taxon sampling than available previously, Bayesian analyses using a site‐heterogeneous mixture model (CAT+GTR) resolved the higher‐level phylogeny of Pentatomomorpha as (Aradoidea + (Pentatomoidea + (Coreoidea + (Lygaeoidea + Pyrrhocoroidea)))). There was a transition from trnT/trnP to trnP/trnT in the common ancestor of Pyrrhocoroidea, which indicates that this gene rearrangement could be an autapomorphy for Pyrrhocoroidea. Divergence time analyses estimated that Pentatomomorpha originated c. 242 Ma in the Middle Triassic, and most of the recognized superfamilies originated during the Middle Jurassic to Early Cretaceous. The diversification of families within Pentatomomorpha largely coincided with the radiation of angiosperms during the Early Cretaceous.  相似文献   

9.
Recent advances in molecular phylogenetics are continuously changing our perception of decapod phylogeny. Although the two suborders Dendrobranchiata and Pleocyemata within the Decapoda are widely accepted, this taxonomic view is now challenged when using mitochondrial protein‐coding genes to investigate the decapod phylogeny, especially for the basal pleocyematan groups. Here, we enhanced taxonomic coverage by sequencing the genomes of two basal decapod taxa Alpheus distinguendus and Panulirus ornatus, representing two infraorders, Caridea and Achelata, respectively. Based on these two and other available mitochondrial genomes, we evaluated the usefulness of protein‐coding genes in resolving deep phylogenetic relationships of the Decapoda using maximum likelihood and Bayesian analyses. The mt genomic results revealed a novel gene order because of the reverse transposition of trnE (transfer, trn for Glutamate) and a pseudogene‐like trnS (AGN) [trn for Serine (S1, AGN)] in the mitochondrial genome of A. distinguendus, and a duplicate of 89 bp sequences in the putative noncoding region of P. ornatus. Our phylogenetic inferences suggest monophyly of the Decapoda and its two suborders, and that several lineages within the Reptantia are consistently recovered with high nodal supports. Our findings suggest that the best mitochondrial genome phylogeny can be found on the premise that systematic errors should be minimized as much as possible. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 471–481.  相似文献   

10.
Chauliops fallax Scott, 1874 (Hemiptera: Heteroptera: Malcidae: Chauliopinae) is one of the most destructive insect pests of soybean and rice fields in Asia. Here we sequenced the complete mitochondrial genome of this pest. This genome is 15,739 bp long, with an A+T content of 73.7%, containing 37 typical animal mitochondrial genes and a control region. All genes were arranged in the same order as most of other Heteroptera. A remarkable strand bias was found for all nine protein coding genes (PCGs) encoded by the majority strand were positive AT-skew and negative GC-skew, whereas the reverse were found in the remaining four PCGs encoded by the minority strand and two rRNA genes. The models of secondary structures for the two rRNA genes of sequenced true bugs and Lygaeoidea were predicted. 16S rRNA consisted of six domains (domain III is absent as in other known arthropod mitochondrial genomes) and 45 helices, while three domains and 27 helices for 12S rRNA. The control region consists of five subregions: a microsatellite-like region, a tandem repeats region and other three motifs. The unusual intergenic spacer between tRNA-H and ND4 only found in the species of Lygaeoidea, not in other heteropteran species, may be the synapomorphy of this superfamily. Phylogenetic analyses were carried out based on all the 13 PCGs showed that Chauliopinae was the sister group of Malcinae and the monophyly of Lygaeoidea.  相似文献   

11.
External and internal head structures of Coleorrhyncha, a key-taxon within the Hemiptera, are described in detail and documented using modern techniques. The main focus is on Hackeriella veitchi, but two additional representatives of the Gondwanan relict group were also examined, and also head structures of Enicocephalidae, a member of a potentially basal heteropteran lineage. Features were compared to those documented in literature for the Sternorrhyncha, Auchenorrhyncha, and Heteroptera. Coleorrhyncha are characterized by highly modified head structures and correspondingly an entire series of autapomorphies, such as for instance a strongly flattened head capsule with fenestrations. However, they also display features that are likely plesiomorphic compared to members of other hemipteran groups. These include the almost complete tentorium and the lack of the gula. The sistergroup relationship between Coleorrhyncha and Heteroptera is well supported by cephalic features. Potential synapomorphies are the presence of a distinct mandibular sulcus, the reduced number of antennomeres, the absence of clasping organs in the labial groove, coiled accessory salivary ducts, the presence of a small cervical muscle M1a (M. pronotopostoccipitalis medialis), the presence of a second mandibular promotor M14 (M. zygomaticus mandibulae), the presence of M28 (M. verticopharyngalis), and M30 (M. frontobuccalis posterior).  相似文献   

12.
Numerous physiological processes in insects are tightly regulated by neuropeptides and their receptors. Although they form an ancient signaling system, there is still a great deal of variety in neuropeptides and their receptors among different species within the same order. Neuropeptides and their receptors have been documented in many hemipteran insects, but the differences among them have been poorly characterized. Commercial grapevines worldwide are plagued by the bug Daktulosphaira vitifoliae (Hemiptera: Sternorrhyncha). Here, 33 neuropeptide precursors and 48 putative neuropeptide G protein-coupled receptor (GPCR) genes were identified in D. vitifoliae. Their expression profiles at the probe and feeding stages reflected potential regulatory roles in probe behavior. By comparison, we found that the Releasing Hormone-Related Peptides (GnRHs) system of Sternorrhyncha was differentiated from those of the other 2 suborders in Hemiptera. Independent secondary losses of the adipokinetic hormone/corazonin-related peptide receptor (ACP) and corazonin (CRZ) occurred during the evolution of Sternorrhyncha. Additionally, we discovered that the neuropeptide signaling systems of Sternorrhyncha were very different from those of Heteroptera and Auchenorrhyncha, which was consistent with Sternorrhyncha's phylogenetic position at the base of the order. This research provides more knowledge on neuropeptide systems and sets the groundwork for the creation of novel D. vitifoliae management strategies that specifically target these signaling pathways.  相似文献   

13.
For their apparent morphological simplicity, the Platyhelminthes or “flatworms” are a diverse clade found in a broad range of habitats. Their body plans have however made them difficult to robustly classify. Molecular evidence is only beginning to uncover the true evolutionary history of this clade. Here we present nine novel mitochondrial genomes from the still undersampled orders Polycladida and Rhabdocoela, assembled from short Illumina reads. In particular we present for the first time in the literature the mitochondrial sequence of a Rhabdocoel, Bothromesostoma personatum (Typhloplanidae, Mesostominae). The novel mitochondrial genomes examined generally contained the 36 genes expected in the Platyhelminthes, with all possessing 12 of the 13 protein-coding genes normally found in metazoan mitochondrial genomes (ATP8 being absent from all Platyhelminth mtDNA sequenced to date), along with two ribosomal RNA genes. The majority presented possess 22 transfer RNA genes, and a single tRNA gene was absent from two of the nine assembled genomes. By comparison of mitochondrial gene order and phylogenetic analysis of the protein coding and ribosomal RNA genes contained within these sequences with those of previously sequenced species we are able to gain a firm molecular phylogeny for the inter-relationships within this clade.Our phylogenetic reconstructions, using both nucleotide and amino acid sequences under several models and both Bayesian and Maximum Likelihood methods, strongly support the monophyly of Polycladida, and the monophyly of Acotylea and Cotylea within that clade. They also allow us to speculate on the early emergence of Macrostomida, the monophyly of a “Turbellarian-like” clade, the placement of Rhabditophora, and that of Platyhelminthes relative to the Lophotrochozoa (=Spiralia). The data presented here therefore represent a significant advance in our understanding of platyhelminth phylogeny, and will form the basis of a range of future research in the still-disputed classifications within this taxon.  相似文献   

14.
Book Review     
Zoological Catalogue of Australia Vol. 27.3A Hemiptera: Heteroptera (Coleorrhyncha to Cimicomorpha). Cassis, G. and Gross, G. F.  相似文献   

15.
Sea anemones (order Actiniaria) are among the most diverse and successful members of the anthozoan subclass Hexacorallia, occupying benthic marine habitats across all depths and latitudes. Actiniaria comprises approximately 1,200 species of solitary and skeleton-less polyps and lacks any anatomical synapomorphy. Although monophyly is anticipated based on higher-level molecular phylogenies of Cnidaria, to date, monophyly has not been explicitly tested and at least some hypotheses on the diversification of Hexacorallia have suggested that actiniarians are para- or poly-phyletic. Published phylogenies have demonstrated the inadequacy of existing morphological-based classifications within Actiniaria. Superfamilial groups and most families and genera that have been rigorously studied are not monophyletic, indicating conflict with the current hierarchical classification. We test the monophyly of Actiniaria using two nuclear and three mitochondrial genes with multiple analytical methods. These analyses are the first to include representatives of all three currently-recognized suborders within Actiniaria. We do not recover Actiniaria as a monophyletic clade: the deep-sea anemone Boloceroides daphneae, previously included within the infraorder Boloceroidaria, is resolved outside of Actiniaria in several of the analyses. We erect a new genus and family for B. daphneae, and rank this taxon incerti ordinis. Based on our comprehensive phylogeny, we propose a new formal higher-level classification for Actiniaria composed of only two suborders, Anenthemonae and Enthemonae. Suborder Anenthemonae includes actiniarians with a unique arrangement of mesenteries (members of Edwardsiidae and former suborder Endocoelantheae). Suborder Enthemonae includes actiniarians with the typical arrangement of mesenteries for actiniarians (members of former suborders Protantheae, Ptychodacteae, and Nynantheae and subgroups therein). We also erect subgroups within these two newly-erected suborders. Although some relationships among these newly-defined groups are still ambiguous, morphological and molecular results are consistent enough to proceed with a new higher-level classification and to discuss the putative functional and evolutionary significance of several morphological attributes within Actiniaria.  相似文献   

16.
In this study, the complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Rodentia, Sciuromorpha, Sciuridae) was sequenced and characterized in detail. The entire mitochondrial genome of P. volans consisted of 16,513 bp and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions. Its gene arrangement pattern was consistent with the mammalian ground pattern. The overall base composition and AT contents were similar to those of other rodent mitochondrial genomes. The light-strand origin generally identified between tRNA Asn and tRNA Cys consisted of a secondary structure with an 11-bp stem and an 11-bp loop. The large control region was constructed of three characteristic domains, ETAS, CD, and CSB without any repeat sequences. Each domain contained ETAS1, subsequences A, B, and C, and CSB1, respectively. In order to examine phylogenetic contentious issues of the monophyly of rodents and phylogenetic relationships among five rodent suborders, here, phylogenetic analyses based on nucleotide sequence data of the 35 rodent and 3 lagomorph mitochondrial genomes were performed using the Bayesian inference and maximum likelihood method. The result strongly supported the rodent monophyly with high node confidence values (BP 100 % in ML and BPP 1.00 in BI) and also monophylies of four rodent suborders (BP 85–100 % in ML and BPP 1.00 in BI), except for Anomalumorpha in which only one species was examined here. Also, phylogenetic relationships among the five rodent suborders were suggested and discussed in detail.  相似文献   

17.
We sequenced 2005 bp of the mitochondrial ND2 and cytochrome b genes from the 25 recognized species of New World orioles (Icterus). Our data confirmed the monophyly of Icterus and produced a well-resolved phylogeny showing three main clades of orioles. We also sequenced multiple subspecies for most polytypic taxa. Our findings demonstrated the importance of dense taxon sampling below the species level in two ways. First, we found evidence that two species are polyphyletic, I. galbula (Northern oriole) and I. dominicensis (Black-cowled oriole). Choosing different subspecies from either of these taxa would lead to different species-level phylogenies. Second, adding subspecies even to monophyletic groups produced a bootstrap tree with significantly more support. Of the two genes that we used, ND2 provided more resolution than did cytochrome b. ND2 evolved up to 40% faster than cytochrome b, yet shows a higher saturation threshold. Our findings suggest that ND2 may be superior to cytochrome b for resolving species-level phylogenies in passerine birds.  相似文献   

18.
Phylogenetic relationships among salamander families illustrate analytical challenges inherent to inferring phylogenies in which terminal branches are temporally very long relative to internal branches. We present new mitochondrial DNA sequences, approximately 2,100 base pairs from the genes encoding ND1, ND2, COI, and the intervening tRNA genes for 34 species representing all 10 salamander families, to examine these relationships. Parsimony analysis of these mtDNA sequences supports monophyly of all families except Proteidae, but yields a tree largely unresolved with respect to interfamilial relationships and the phylogenetic positions of the proteid genera Necturus and Proteus. In contrast, Bayesian and maximum-likelihood analyses of the mtDNA data produce a topology concordant with phylogenetic results from nuclear-encoded rRNA sequences, and they statistically reject monophyly of the internally fertilizing salamanders, suborder Salamandroidea. Phylogenetic simulations based on our mitochondrial DNA sequences reveal that Bayesian analyses outperform parsimony in reconstructing short branches located deep in the phylogenetic history of a taxon. However, phylogenetic conflicts between our results and a recent analysis of nuclear RAG-1 gene sequences suggest that statistical rejection of a monophyletic Salamandroidea by Bayesian analyses of our mitochondrial genomic data is probably erroneous. Bayesian and likelihood-based analyses may overestimate phylogenetic precision when estimating short branches located deep in a phylogeny from data showing substitutional saturation; an analysis of nucleotide substitutions indicates that these methods may be overly sensitive to a relatively small number of sites that show substitutions judged uncommon by the favored evolutionary model.  相似文献   

19.
Seirinae is one of the most diverse subfamilies of Collembola. To date no detailed phylogeny of Seirinae has been proposed, which leads to difficulties in the understanding of evolutionary patterns regarding this taxon. The main aim of this study is to clarify the phylogenetic relationships within the Neotropical Seirinae, by generating and analysing the mitochondrial genomes of 26 terminal taxa of Entomobryidae, and one species of Paronellidae. Specifically, we first generated Illumina HiSeq 2000 shotgun sequence data from each species, then reconstructed the mitochondrial genome of each species using two methods: MitoZ and MIRA/MITOBim. Using these data, we were able to generate a well-supported phylogeny that combined all the above species as well as three publicly available mitogenomes from other species. Bayesian and maximum likelihood methods were applied using all 13 protein coding genes. In this way, monophyly for the internal groups of Seirinae was obtained based on molecular evidence for the first time, as was the potential validity of three main internal taxa of the subfamily. We furthermore validated that Tyrannoseira is a distinct lineage and propose the elevation of Lepidocyrtinus to genus. Lastly, we anticipate that these newly available mitogenomes will serve as a useful dataset for future studies on the evolution of the Collembola and Hexapoda.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号