共查询到20条相似文献,搜索用时 0 毫秒
1.
AKIYO NAIKI 《Plant Species Biology》2012,27(1):3-29
Heterostyly is a genetically controlled sexual polymorphism promoting outcrossing by animal pollinators. The occurrence of heterostyly in angiosperms was investigated, and 199 genera in 28 families in 15 orders were recognized as taxa that contain heterostylous species. A correlation between the occurrence of heterostyly and ploidy level was found in some limited groups in Primulaceae and Rubiaceae. In such taxa, individuals with a lower ploidy level tended to have heterostyly and individuals with a higher ploidy level tended to have monomorphic flowers. It appears reasonable that the first step of the breakdown of heterostyly was the recombination of the supergene in a diploid heterostylous plant, and then poyploidization incidentally occurred. Polyploidization itself does not necessarily appear to have direct effects on the breakdown of heterostyly. 相似文献
2.
STEPHEN G. WELLER 《Botanical journal of the Linnean Society. Linnean Society of London》2009,160(3):249-261
Darwin's book, The Different Forms of Flowers on Plants of the Same Species, has stimulated an extraordinary amount of original research since its publication in 1877. In his book, Darwin focused primarily on heterostylous reproductive systems in flowering plants, in which two or three reproductive morphs with reciprocal placement of anthers and stigmas occur in populations. These morphs are usually self‐incompatible and cross‐incompatible with individuals possessing the same reproductive morph. Many of the papers on heterostyly published since Forms of Flowers appeared have focused on the questions raised by Darwin about the evolution and function of heterostyly. Darwin's hypothesis that heterostyly promotes cross‐pollination between different morphs has been largely substantiated, despite the difficulties in finding the ideal experimental system to address this question. Heterostyly is now known to occur in many more plant families than at the time Forms of Flowers was published and, as expected, the heterostylous syndrome is now defined more broadly than in Darwin's time. The origin of heterostyly remains an area of active research, with hypotheses stressing either the evolution of heteromorphic self‐incompatibility as the first step in the evolution of this reproductive system or, alternatively, the evolution of the reciprocal features of floral morphology. Phylogenetic approaches, combined with studies on the physiological and molecular genetic basis of heterostyly, offer promise in helping to resolve questions about the origin of heterostyly. There is no doubt that heterostyly has evolved on multiple occasions and that self‐incompatibility associated with heterostyly is unrelated to the more common multi‐allelic self‐incompatibility systems found in monomorphic species. Further progress in understanding conditions favouring evolution of heterostyly will depend on an increased understanding of the relation between the reciprocal morphological features of the breeding system and the nature of self‐incompatibility. Almost a century and a half after the appearance of The Different Forms of Flowers on Plants of the Same Species, heterostyly remains an active area of research. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 249–261. 相似文献
3.
L. Husse S. Billiard J. Lepart P. Vernet P. Saumitou‐Laprade 《Journal of evolutionary biology》2013,26(6):1269-1280
Androdioecy, the occurrence of males and hermaphrodites in a single population, is a rare breeding system because the conditions for maintenance of males are restrictive. In the androdioecious shrub Phillyrea angustifolia, high male frequencies are observed in some populations. The species has a sporophytic self‐incompatibility (SI) system with two self‐incompatibility groups, which ensures that two groups of hermaphrodites can each mate only with the other group, whereas males can fertilize hermaphrodites of both groups. Here, we analyse a population genetic model to investigate the dynamics of such an androdioecious species, assuming that self‐incompatibility and sex phenotypes are determined by a single locus. Our model confirms a previous prediction that a slight reproductive advantage of males relative to hermaphrodites allows the maintenance of males at high equilibrium frequencies. The model predicts different equilibria between hermaphrodites of the two SI groups and males, depending on the male advantage, the initial composition of the population and the population size, whose effect is studied through stochastic simulations. Although the model can generate high male frequencies, observed frequencies are considerably higher than the model predicts. We finally discuss how this model may help explain the large male frequency variation observed in other androdioecious species of Oleaceae: some species show only androdioecious populations, as P. angustifolia, whereas others show populations either completely hermaphrodite or androdioecious. 相似文献
4.
5.
No comparative study of floral senescence following male function among a range of tropical orchid genera has previously been undertaken. The timing and pattern of floral senescence and occurrence of fruit formation were studied following self-, geitonogamous and cross-pollination in 14 epiphytic and two terrestrial orchid species to determine their breeding system and assess the occurrence of floral abscission following pollinaria removal. Both pollination and pollinaria removal caused rapid floral senescence, and the pattern and timing of the floral changes were the same in all treatments. Six Dendrobium species and Pelatantheria insectifera were self-incompatible (SI) and eight other species, including one terrestrial species, were self-compatible (SC). Capsules produced from outcrossing in four SC species, Phalaenopsis cornu-cervi, Eria pubescens, Cleisostoma appendiculatum and Arundina graminifolia, were larger and heavier than those produced after selfing. Reductions in flower life span following pollinaria removal were positively correlated with flower size and longevity of unpollinated flowers but not with position in the inflorescence or nature of the breeding system. Rapid flower senescence following pollinaria removal reported here suggests that it may be widespread in tropical species. The significant association of the response with size of flowers and inflorescences among the species studied suggests that the cost of flower maintenance outweighs the benefit of remaining open for female function after pollinaria have been removed. Both SC and SI species were found among tropical orchids, but variation in capsule size following self- and cross-pollination indicates that there may be a reduction in seed production following selfing, even in SC species, and that fruit formation alone should not be taken as reliable evidence of full self-compatibility. 相似文献
6.
- Breeding systems of plants determine their reliance on pollinators and ability to produce seeds following self‐pollination. Self‐sterility, where ovules that are penetrated by self‐pollen tubes that do not develop into seeds, is usually considered to represent either a system of late‐acting self‐incompatibility or strong early inbreeding depression. Importantly, it can lead to impaired female function through ovule or seed discounting when stigmas receive mixtures of self and cross pollen, unless cross pollen is able to reach the ovary ahead of self pollen (‘prepotency’). Self‐sterility associated with ovule penetration by self‐pollen tubes appears to be widespread among the Amaryllidaceae.
- We tested for self‐sterility in three Cyrtanthus species – C. contractus, C. ventricosus and C. mackenii – by means of controlled hand‐pollination experiments. To determine the growth rates and frequency of ovule penetration by self‐ versus cross‐pollen tubes, we used fluorescence microscopy to examine flowers of C. contractus harvested 24, 48 and 72 h after pollination, in conjunction with a novel method of processing these images digitally. To test the potential for ovule discounting (loss of cross‐fertilisation opportunities when ovules are disabled by self‐pollination), we pollinated flowers of C. contractus and C. mackenii with mixtures of self‐ and cross pollen.
- We recorded full self‐sterility for C. contractus and C. ventricosus, and partial self‐sterility for C. mackenii. In C. contractus, we found no differences in the growth rates of self‐ and cross‐pollen tubes, nor in the proportions of ovules penetrated by self‐ and cross‐pollen tubes. In this species, seed set was depressed (relative to cross‐pollinated controls) when flowers received a mixture of self and cross pollen, but this was not the case for C. mackenii.
- These results reveal variation in breeding systems among Cyrtanthus species and highlight the potential for gender conflict in self‐sterile species in which ovules are penetrated and disabled by pollen tubes from self pollen.
7.
Jessica Pérez‐Alquicira Stephen G. Weller César A. Domínguez Francisco E. Molina‐Freaner Olga V. Tsyusko 《Ecology and evolution》2018,8(11):5661-5673
Historical factors such as climatic oscillations during the Pleistocene epoch have dramatically impacted species distributions. Studies of the patterns of genetic structure in angiosperm species using molecular markers with different modes of inheritance contribute to a better understanding of potential differences in colonization and patterns of gene flow via pollen and seeds. These markers may also provide insights into the evolution of reproductive systems in plants. Oxalis alpina is a tetraploid, herbaceous species inhabiting the Sky Island region of the southwestern United States and northern Mexico. Our main objective in this study was to analyze the influence of climatic oscillations on the genetic structure of O. alpina and the impact of these oscillations on the evolutionary transition from tristylous to distylous reproductive systems. We used microsatellite markers and compared our results to a previous study using chloroplast genetic markers. The phylogeographic structure inferred by both markers was different, suggesting that intrinsic characteristics including the pollination system and seed dispersal have influenced patterns of gene flow. Microsatellites exhibited low genetic structure, showed no significant association between geographic and genetic distances, and all individual genotypes were assigned to two main groups. In contrast, chloroplast markers exhibited a strong association between geographic and genetic distance, had higher levels of genetic differentiation, and were assigned to five groups. Both types of DNA markers showed evidence of a northward expansion as a consequence of climate warming occurring in the last 10,000 years. The data from both types of markers support the hypothesis for several independent transitions from tristyly to distyly. 相似文献
8.
Abstract: The breeding system of Luehea grandiflora (Tiliaceae‐Malvaceae s.l.) was investigated using hand pollinations and fluorescence microscopy studies of pollen tube growth. Although selfed flowers persisted for some 10 days, our study indicates that L. grandiflora is self‐incompatible, with self pollen tube inhibition in the upper style, as occurs in many taxa with homomorphic, gametophytic self‐incompatibility (GSI). L. grandiflora is only the second species reported within the Malvales with homomorphic stylar inhibition. This result is discussed within the context of a report for self‐compatibility in this species, and we also consider the phylogenetic implications for the occurrence of GSI in the family Malvaceae s.l. 相似文献
9.
Sweet cherry is a self‐incompatible fruit tree species in the Rosaceae. As other species in the family, sweet cherry exhibits S‐RNase‐based gametophytic self‐incompatibility. This mechanism is genetically determined by the S‐locus that encodes the pollen and pistil determinants, SFB and S‐RNase, respectively. Several self‐compatible sweet cherry genotypes have been described and most of them have mutations at the S‐locus leading to self‐compatibility. However, ‘Cristobalina’ sweet cherry is self‐compatible due to a mutation in a pollen function modifier that is not linked to the S‐locus. To investigate the physiology of self‐compatibility in this cultivar, S‐locus segregation in crosses involving ‘Cristobalina’ pollen, and pollen tube growth in self‐ and cross‐pollinations, were studied. In the crosses with genotypes sharing only one S‐haplotype, the non‐self S‐haplotype was inherited more frequently than the self S‐haplotype. Pollen tube growth studies revealed that the time to travel the whole length of the style was longer for self‐pollen tubes than for cross‐pollen tubes. Together, these results suggest that ‘Cristobalina’ pollen tube growth is slower after self‐pollination than after cross‐pollination. This reproductive strategy would allow self‐fertilisation in the absence of compatible pollen but would promote cross‐fertilisation if cross‐compatible pollen is available, a possible case of cryptic self‐incompatibility. This bet‐hedging strategy might be advantageous for an ecotype that is native to the mountains of the Spanish Mediterranean coast, in the geographical limits of the distribution of this species. ‘Cristobalina’ blooming takes place very early in the season when mating possibilities are scarce and, consequently, self‐compatibility may be the only possibility for this genotype to produce offspring. 相似文献
10.
Breakdown of self-incompatibility increases opportunities for both self-fertilization and interspecific hybridization, although the latter is dependent on the extent of competition between heterospecific and conspecific pollen. We investigate the mating system and pollination biology of five phylogenetically closely related species within a distylous species complex in Hedyotis L. (Rubiaceae) in southern China. The complex comprises Hedyotis acutangula Champ. ex Benth., Hedyotis shiuyingiae T.Chen, Hedyotis vachellii (Hook. & Arn.) Kuntze, and two putative hybrid species, Hedyotis bodinieri (H.Lév.) Chun and Hedyotis loganioides Benth., hypothesized to result from interbreeding between these species. We test the hypothesis that the breakdown of self- and interspecific incompatibilities in sympatric Hedyotis species might allow interspecific hybridization in natural populations. We assessed the extent of self- and interspecific incompatibility in sympatric populations, including investigations of spontaneous and artificial self-pollination, geitonogamy, inter- and intramorph xenogamy. Artificial interspecific crosses were undertaken between H. acutangula, H. shiuyingiae, and H. bodinieri, between H. acutangula and H. vachellii, and between H. acutangula and H. loganioides. Hedyotis acutangula is demonstrated to be self- and interspecific compatible, whereas H. vachellii, H. bodinieri, and H. loganioides are self-compatible and interspecific incompatible; H. shiuyingiae, in contrast, is strictly self- and interspecific incompatible. Comparisons of pollen tube growth rates in hybridizing species-pairs revealed that heterospecific pollen of H. shiuyingiae, H. vachellii, and H. bodinieri can compete with conspecific self-pollen of H. acutangula. Our study therefore indicates that the breakdown of self-incompatibility directly and indirectly facilitates interspecific hybridization and provides a platform for better understanding evolutionary directionality in Hedyotis. 相似文献
11.
There is discussion over whether pollen limitation exerts selection on floral traits to increase floral display or selects for traits that promote autonomous self‐fertilization. Some studies have indicated that pollen limitation does not mediate selection on traits associated with either pollinator attraction or self‐fertilization. Primula tibetica is an inconspicuous cross‐fertilized plant that may suffer from pollen limitation. We conducted a selection analysis on P. tibetica to investigate whether pollen limitation results in selection for an increased floral display in case the evolution of autonomous self‐fertilization has been difficult for this plant. The self‐ and intra‐morph incompatibility features, the capacity for autonomous self‐fertilization, and the magnitude of pollen limitation were examined through hand‐pollination experiments. In 2016, we applied selection analysis on the flowering time, corolla width, stalk height, flower tube length, and flower number in P. tibetica by tagging 76 open‐pollinated plants and 37 hand‐pollinated plants in the field. Our results demonstrated that P. tibetica was strictly self‐ and intra‐morph incompatible. Moreover, the study population underwent severe pollen limitation during the 2016 flowering season. The selection gradients were found to be significantly positive for flowering time, flower number, and corolla width, and marginally significant for the stalk height. Pollinator‐mediated selection was found to be significant on the flower number and corolla width, and marginally significant on stalk height. Our results indicate that the increased floral display may be a vital strategy for small distylous species that have faced difficulty in evolving autonomous self‐fertilization. 相似文献
12.
The evolution of self‐compatibility (SC) by the loss of self‐incompatibility (SI) is regarded as one of the most frequent transitions in flowering plants. SI systems are generally characterized by specific interactions between the male and female specificity genes encoded at the S‐locus. Recent empirical studies have revealed that the evolution of SC is often driven by male SC‐conferring mutations at the S‐locus rather than by female mutations. In this study, using a forward simulation model, we compared the fixation probabilities of male vs. female SC‐conferring mutations at the S‐locus. We explicitly considered the effects of pollen availability in the population and bias in the occurrence of SC‐conferring mutations on the male and female specificity genes. We found that male SC‐conferring mutations were indeed more likely to be fixed than were female SC‐conferring mutations in a wide range of parameters. This pattern was particularly strong when pollen availability was relatively high. Under such a condition, even if the occurrence of mutations was biased strongly towards the female specificity gene, male SC‐conferring mutations were much more often fixed. Our study demonstrates that fixation probabilities of those two types of mutation vary strongly depending on ecological and genetic conditions, although both types result in the same evolutionary consequence—the loss of SI. 相似文献
13.
14.
Raduski AR Haney EB Igić B 《Evolution; international journal of organic evolution》2012,66(4):1275-1283
Self-incompatibility is expressed by nearly one-half of all angiosperms. A large proportion of the remaining species are self-compatible, and they either outcross using various contrivances or self-fertilize to some extent. Because of the common occurrence of populations and individuals with intermediate levels of self-incompatibility, categorization of the expression of self-incompatibility as an approximately binary trait has become controversial. We collect a widely reported index (index of self-incompatibility [ISI]) used to asses the strength and variation of self-incompatibility from over 1200 angiosperm taxa. Its distribution is bimodal and positively associated with outcrossing rate, albeit with a weak relationship within self-compatible taxa. A substantial fraction of species has intermediate mean values of ISI. Their occurrence can be caused by segregating ephemeral self-compatible mutations, averaging artifacts, and experimental biases, in addition to the often invoked stabilizing selection acting on the expression of self-incompatibility. Selection may also generally favor taxa with high ISI values through increased lineage birth and death rates, and it may counter lower level selection advantages within taxa expressing intermediate and low values of ISI. Such a null hypothesis is nearly universally overlooked, despite the fact that it could adequately explain the observed distribution of mating and breeding systems. 相似文献
15.
Jurriaan M. de Vos Rafael O. Wüest Elena Conti 《Evolution; international journal of organic evolution》2014,68(4):1042-1057
One of the most common trends in plant evolution, loss of self‐incompatibility and ensuing increases in selfing, is generally assumed to be associated with a suite of phenotypic changes, notably a reduction of floral size, termed the selfing syndrome. We investigate whether floral morphological traits indeed decrease in a deterministic fashion after losses of self‐incompatibility, as traditionally expected, using a phylogeny of 124 primrose species containing nine independent transitions from heterostyly (heteromorphic incompatibility) to homostyly (monomorphic self‐compatibility), a classic system for evolution of selfing. We find similar overall variability of homostylous and heterostylous species, except for diminished herkogamy in homostyles. Bayesian mixed models demonstrate differences between homostylous and heterostylous species in all traits, but net effects across species are small (except herkogamy) and directionality differs among traits. Strongly drift‐like evolutionary trajectories of corolla tube length and corolla diameter inferred by Ornstein–Uhlenbeck models contrast with expected deterministic trajectories toward small floral size. Lineage‐specific population genetic effects associated with evolution of selfing may explain that reductions of floral size represent one of several possible outcomes of floral evolution after loss of heterostyly in primroses. Contrary to the traditional paradigm, selfing syndromes may, but do not necessarily evolve in response to increased selfing. 相似文献
16.
Lynn Bohs 《Biotropica》2000,32(1):70-79
The Witheringia solanacea complex consists of three species, W. asterotricha, W. meiantha, and W, solanacea, native to Central and South America. The three taxa are morphologically similar, and their distinctions and relationships have been the subject of taxonomic controversy. To investigate breeding systems and potential for hybridization among the taxa of the complex, two Costa Rican accessions per species were used in a crossing program. All plants were self‐incompatible except for one accession of W. solanacea. Hybrid plants resulted from all crosses among accessions of W. asterotricha and W. solanacea. Most crosses were unsuccessful using W. meiantha in combination with either of the other two taxa. It is suggested that W. meiantha and W. solanacea be recognized as separate taxa, but that W. asterotricha be considered a synonym of W. solanacea. 相似文献
17.
18.
Kelly Robertson Emma E. Goldberg Boris Igić 《Evolution; international journal of organic evolution》2011,65(1):139-155
Breakdown of self‐incompatibility occurs repeatedly in flowering plants with important evolutionary consequences. In plant families in which self‐incompatibility is mediated by S‐RNases, previous evidence suggests that polyploidy may often directly cause self‐compatibility through the formation of diploid pollen grains. We use three approaches to examine relationships between self‐incompatibility and ploidy. First, we test whether evolution of self‐compatibility and polyploidy is correlated in the nightshade family (Solanaceae), and find the expected close association between polyploidy and self‐compatibility. Second, we compare the rate of breakdown of self‐incompatibility in the absence of polyploidy against the rate of breakdown that arises as a byproduct of polyploidization, and we find the former to be greater. Third, we apply a novel extension to these methods to show that the relative magnitudes of the macroevolutionary pathways leading to self‐compatible polyploids are time dependent. Over small time intervals, the direct pathway from self‐incompatible diploids is dominant, whereas the pathway through self‐compatible diploids prevails over longer time scales. This pathway analysis is broadly applicable to models of character evolution in which sequential combinations of rates are compared. Finally, given the strong evidence for both irreversibility of the loss of self‐incompatibility in the family and the significant association between self‐compatibility and polyploidy, we argue that ancient polyploidy is highly unlikely to have occurred within the Solanaceae, contrary to previous claims based on genomic analyses. 相似文献
19.
Ling Li Bo Liu Xiaomei Deng Hainan Zhao Hongyan Li Shilai Xing Della D. Fetzer Mengya Li Mikhail E. Nasrallah June B. Nasrallah Pei Liu 《Molecular ecology》2018,27(12):2742-2753
The evolutionary concurrence of intraspecies self‐incompatibility (SI) and explosive angiosperm radiation in the Cretaceous have led to the hypothesis that SI was one of the predominant drivers of rapid speciation in angiosperms. Interspecies unilateral incompatibility (UI) usually occurs when pollen from a self‐compatible (SC) species is rejected by the pistils of a SI species, while the reciprocal pollination is compatible (UC). Although this SI × SC type UI is most prevalent and viewed as a prezygotic isolation barrier to promote incipient speciation of angiosperms, comparative evidence to support such a role is lacking. We show that SI × SI type UI in SI species pairs is also common in the well‐characterized accessions representing the four major lineages of the Arabidopsis genus and is developmentally regulated. This allowed us to reveal a strong correlation between UI strength and species divergence in these representative accessions. In addition, analyses of a SC accession and the pseudo‐self‐compatible (psc) spontaneous mutant of Arabidopsis lyrata indicate that UI shares, at least, common pollen rejection pathway with SI. Furthermore, genetic and genomic analyses of SI × SI type UI in A. lyrata × A. arenosa species pair showed that two major‐effect quantitative trait loci are the stigma and pollen‐side determinant of UI, respectively, which could be involved in heterospecies pollen discrimination. By revealing a close link between UI and SI pathway, particularly between UI and species divergence in these representative accessions, our findings establish a connection between SI and speciation. Thus, the pre‐existence of SI system would have facilitated the evolution of UI and accordingly promote speciation. 相似文献
20.
Takanori Matsuura Masaki Unno Hiroaki Sakai Tomitake Tsukihara Shigemi Norioka 《Acta Crystallographica. Section D, Structural Biology》2001,57(1):172-173
S‐RNase is a 25 kDa pistil‐specific protein associated with gametophytic self‐incompatibility. The S‐RNase is secreted into the transmitting tissue of the pistil and is responsible for the discrimination of pollen S‐alleles. Crystals of Japanese pear S3‐RNase were obtained by the hanging‐drop vapour‐diffusion method. Preliminary X‐ray data showed that the crystals diffract to a 1.5 Å resolution and belong to the space group P21, with unit‐cell parameters a = 45.4, b = 52.4, c = 47.4 Å, α = γ = 90, β = 106.5°. 相似文献