共查询到20条相似文献,搜索用时 0 毫秒
1.
Daniel S. Chapman 《Global Change Biology》2013,19(11):3463-3471
Mountain plants are considered among the species most vulnerable to climate change, especially at high latitudes where there is little potential for poleward or uphill dispersal. Satellite monitoring can reveal spatiotemporal variation in vegetation activity, offering a largely unexploited potential for studying responses of montane ecosystems to temperature and predicting phenological shifts driven by climate change. Here, a novel remote‐sensing phenology approach is developed that advances existing techniques by considering variation in vegetation activity across the whole year, rather than just focusing on event dates (e.g. start and end of season). Time series of two vegetation indices (VI), normalized difference VI (NDVI) and enhanced VI (EVI) were obtained from the moderate resolution imaging spectroradiometer MODIS satellite for 2786 Scottish mountain summits (600–1344 m elevation) in the years 2000–2011. NDVI and EVI time series were temporally interpolated to derive values on the first day of each month, for comparison with gridded monthly temperatures from the preceding period. These were regressed against temperature in the previous months, elevation and their interaction, showing significant variation in temperature sensitivity between months. Warm years were associated with high NDVI and EVI in spring and summer, whereas there was little effect of temperature in autumn and a negative effect in winter. Elevation was shown to mediate phenological change via a magnification of temperature responses on the highest mountains. Together, these predict that climate change will drive substantial changes in mountain summit phenology, especially by advancing spring growth at high elevations. The phenological plasticity underlying these temperature responses may allow long‐lived alpine plants to acclimate to warmer temperatures. Conversely, longer growing seasons may facilitate colonization and competitive exclusion by species currently restricted to lower elevations. In either case, these results show previously unreported seasonal and elevational variation in the temperature sensitivity of mountain vegetation activity. 相似文献
2.
Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite‐derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29‐year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature‐driven phenological models. 相似文献
3.
- We reviewed dietary data in the literature for Japanese martens Martes melampus from 21 study sites covering the entire geographic range of the species, tested for differences in the diets of martens in evergreen and deciduous forests, and described variation in main diets and dietary diversity in relation to geographical and environmental variables.
- Fruits, mammals, and insects occurred at the highest frequencies in faeces throughout the species’ range. Mammal prey items and non‐fruits were detected less frequently in scats collected in evergreen forests than in deciduous forests, while non‐fruits were detected more frequently in evergreen forests.
- Three environmental variables (mean temperature, variation in the normalised difference vegetation index [NDVI], and snow depth) had significant effects on variation in dietary composition, but the relative contribution of each variable varied among food items. Geographical variables, on the other hand, had no significant effects on variation in dietary composition.
- Mean temperature explained the variation in insect feeding, which increased in forests with moderate temperature. Snow depth explained the variation in feeding on non‐insects and other vertebrates; the former increased in forests with lower snow depth, while the latter increased in forests with higher snow depth. Variation in NDVI, on the other hand, had no effect on variation in feeding on a specific dietary category.
- The snow depth had a significant effect on the variation in dietary diversity, which became lower in forests with moderate snow depth. The high plasticity in the dietary composition and dietary diversity might represent a behavioural trait acquired by Japanese martens to allow them to expand their range into various forests with different food availabilities.
- When studying the variation in feeding behaviour of omnivorous carnivores, multiple environmental variables need to be considered equally.
4.
Mara Y. McPartland Evan S. Kane Michael J. Falkowski Randy Kolka Merritt R. Turetsky Brian Palik Rebecca A. Montgomery 《Global Change Biology》2019,25(1):93-107
Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regional NDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing of NDVI to track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition to NDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found that NDVI decreased with long‐term reductions in soil moisture at the APEX site, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasing NDVI with elevated temperature at the SPRUCE site, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at the SPRUCE site also led to increases in the LAI of the shrub layer. We found no strong effects of elevated CO2 on community composition. Our findings support recent studies suggesting that changes in NDVI observed from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming. 相似文献
5.
A shift in the magnitude and timing of animal migrations is one of the most documented ecological effects of climate change. Although migrations are largely driven by spatial variation in resource gradients, few studies connect expected changes in primary production with geographic patterns in migratory behavior. Here, we link lake primary production to the occurrence of sea migrations in the partially anadromous salmonid Arctic char (Salvelinus alpinus L.). We compiled presence/absence records of anadromous char populations spanning productivity and temperature gradients along the Norwegian coast. The probability of anadromy decreased with increasing migration distance, maximum slope of the migration route and lake productivity. There was a significant interaction between lake productivity and migration distance. The negative effect of longer migration distances was more severe in lakes with higher productivity, indicating reduced relative profitability of migration with increased feeding opportunities in freshwater. Lake productivity was mainly driven by terrestrial primary production in the catchment. We predicted future distributions of anadromous char given downscaled temperature and precipitation changes projected by two different emission scenarios and global climate models (GCMs). Projected increases in temperature and precipitation in 2071–2100 increased terrestrial primary production and, compared to the control scenario (1961–1990), decreased the range of anadromous populations. The prevalence of anadromy decreased by 53% in the HadAm3H GCM with the A2 emission scenario, 61% in HadAm3H with the B2 scenario and 22% in ECHAM4 with the B2 scenario. Cross‐ecosystem studies (e.g., terrestrial to freshwater) are critical for understanding ecological impacts of climate change. In this case, climate‐driven increases in terrestrial primary production are expected to increase primary production in lakes and ultimately reduce the prevalence of anadromy in Arctic char populations. 相似文献
6.
Taehee Hwang Lawrence E. Band Chelcy F. Miniat Conghe Song Paul V. Bolstad James M. Vose Jason P. Love 《Global Change Biology》2014,20(8):2580-2595
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate‐resolution imaging spectro‐radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape‐induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape‐induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. 相似文献
7.
Jinquan Li Ming Nie Elise Pendall Peter B. Reich Junmin Pei Nam Jin Noh Ting Zhu Bo Li Changming Fang 《Global Change Biology》2020,26(3):1873-1885
Determining soil carbon (C) responses to rising temperature is critical for projections of the feedbacks between terrestrial ecosystems, C cycle, and climate change. However, the direction and magnitude of this feedback remain highly uncertain due largely to our limited understanding of the spatial heterogeneity of soil C decomposition and its temperature sensitivity. Here we quantified C decomposition and its response to temperature change with an incubation study of soils from 203 sites across tropical to boreal forests in China spanning a wide range of latitudes (18°16′ to 51°37′N) and longitudes (81°01′ to 129°28′E). Mean annual temperature (MAT) and mean annual precipitation primarily explained the biogeographic variation in the decomposition rate and temperature sensitivity of soils: soil C decomposition rate decreased from warm and wet forests to cold and dry forests, while Q10‐MAT (standardized to the MAT of each site) values displayed the opposite pattern. In contrast, biological factors (i.e. plant productivity and soil bacterial diversity) and soil factors (e.g. clay, pH, and C availability of microbial biomass C and dissolved organic C) played relatively small roles in the biogeographic patterns. Moreover, no significant relationship was found between Q10‐MAT and soil C quality, challenging the current C quality–temperature hypothesis. Using a single, fixed Q10‐MAT value (the mean across all forests), as is usually done in model predictions, would bias the estimated soil CO2 emissions at a temperature increase of 3.0°C. This would lead to overestimation of emissions in warm biomes, underestimation in cold biomes, and likely significant overestimation of overall C release from soil to the atmosphere. Our results highlight that climate‐related biogeographic variation in soil C responses to temperature needs to be included in next‐generation C cycle models to improve predictions of C‐climate feedbacks. 相似文献
8.
Tamara J. Zelikova Ruth A. Hufbauer Sasha C. Reed Timothy Wertin Christa Fettig Jayne Belnap 《Ecology and evolution》2013,3(5):1374-1387
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green‐up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site‐specific characteristics such as soil texture, on plant demography and have direct implications for B. tectorum invasion dynamics on the Colorado Plateau. 相似文献
9.
Miles T. Wetherington David E. Jennings Paula M. Shrewsbury Jian J. Duan 《Ecology and evolution》2017,7(20):8578-8587
Observed changes in mean temperature and increased frequency of extreme climate events have already impacted the distributions and phenologies of various organisms, including insects. Although some research has examined how parasitoids will respond to colder temperatures or experimental warming, we know relatively little about how increased variation in temperature and humidity could affect interactions between parasitoids and their hosts. Using a study system consisting of emerald ash borer (EAB), Agrilus planipennis, and its egg parasitoid Oobius agrili, we conducted environmentally controlled laboratory experiments to investigate how increased seasonal climate variation affected the synchrony of host–parasitoid interactions. We hypothesized that increased climate variation would lead to decreases in host and parasitoid survival, host fecundity, and percent parasitism (independent of host density), while also influencing percent diapause in parasitoids. EAB was reared in environmental chambers under four climate variation treatments (standard deviations in temperature of 1.24, 3.00, 3.60, and 4.79°C), while O. agrili experiments were conducted in the same environmental chambers using a 4 × 3 design (four climate variation treatments × 3 EAB egg densities). We found that EAB fecundity was negatively associated with temperature variation and that temperature variation altered the temporal egg laying distribution of EAB. Additionally, even moderate increases in temperature variation affected parasitoid emergence times, while decreasing percent parasitism and survival. Furthermore, percent diapause in parasitoids was positively associated with humidity variation. Our findings indicate that relatively small changes in the frequency and severity of extreme climate events have the potential to phenologically isolate emerging parasitoids from host eggs, which in the absence of alternative hosts could lead to localized extinctions. More broadly, these results indicate how climate change could affect various life history parameters in insects, and have implications for consumer–resource stability and biological control. 相似文献
10.
Colin A. Chapman Kim Valenta Tyler R. Bonnell Kevin A. Brown Lauren J. Chapman 《Biotropica》2018,50(3):384-395
Fruiting, flowering, and leaf set patterns influence many aspects of tropical forest communities, but there are few long‐term studies examining potential drivers of these patterns, particularly in Africa. We evaluated a 15‐year dataset of tree phenology in Kibale National Park, Uganda, to identify abiotic predictors of fruit phenological patterns and discuss our findings in light of climate change. We quantified fruiting for 326 trees from 43 species and evaluated these patterns in relation to solar radiance, rainfall, and monthly temperature. We used time‐lagged variables based on seasonality in linear regression models to assess the effect of abiotic variables on the proportion of fruiting trees. Annual fruiting varied over 3.8‐fold, and inter‐annual variation in fruiting is associated with the extent of fruiting in the peak period, not variation in time of fruit set. While temperature and rainfall showed positive effects on fruiting, solar radiance in the two‐year period encompassing a given year and the previous year was the strongest predictor of fruiting. As solar irradiance was the strongest predictor of fruiting, the projected increase in rainfall associated with climate change, and coincident increase in cloud cover suggest that climate change will lead to a decrease in fruiting. ENSO in the prior 24‐month period was also significantly associated with annual ripe fruit production, and ENSO is also affected by climate change. Predicting changes in phenology demands understanding inter‐annual variation in fruit dynamics in light of potential abiotic drivers, patterns that will only emerge with long‐term data. 相似文献
11.
Tsechoe Dorji Ørjan Totland Stein R. Moe Kelly A. Hopping Jianbin Pan Julia A. Klein 《Global Change Biology》2013,19(2):459-472
Global climate change is predicted to have large impacts on the phenology and reproduction of alpine plants, which will have important implications for plant demography and community interactions, trophic dynamics, ecosystem energy balance, and human livelihoods. In this article we report results of a 3‐year, fully factorial experimental study exploring how warming, snow addition, and their combination affect reproductive phenology, effort, and success of four alpine plant species belonging to three different life forms in a semiarid, alpine meadow ecosystem on the central Tibetan Plateau. Our results indicate that warming and snow addition change reproductive phenology and success, but responses are not uniform across species. Moreover, traits associated with resource acquisition, such as rooting depth and life history (early vs. late flowering), mediate plant phenology, and reproductive responses to changing climatic conditions. Specifically, we found that warming delayed the reproductive phenology and decreased number of inflorescences of Kobresia pygmaea C. B. Clarke, a shallow‐rooted, early‐flowering plant, which may be mainly constrained by upper‐soil moisture availability. Because K. pygmaea is the dominant species in the alpine meadow ecosystem, these results may have important implications for ecosystem dynamics and for pastoralists and wildlife in the region. 相似文献
12.
John E. Drake Catriona A. Macdonald Mark G. Tjoelker Kristine Y. Crous Teresa E. Gimeno Brajesh K. Singh Peter B. Reich Ian C. Anderson David S. Ellsworth 《Global Change Biology》2016,22(1):380-390
Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free‐Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short‐term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light‐saturated photosynthesis of canopy leaves (Asat) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2. The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research. 相似文献
13.
Mark A. K. Gillespie Ingibjörg S. Jónsdóttir Ian D. Hodkinson Elisabeth J. Cooper 《Global Change Biology》2013,19(12):3698-3708
Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. This study investigated trophic interactions between an herbivorous insect (Sitobion calvulum, Aphididae), a woody perennial host plant (Salix polaris) and a selective vertebrate grazer (barnacle geese, Branta leucopsis). In a factorial experiment, the responses of the insect and its host to elevated temperatures using open top chambers (OTCs) and to three levels of goose grazing pressure were assessed over two summer growing seasons (2004 and 2005). OTCs significantly enhanced the leaf phenology of Salix in both years and there was a significant OTC by goose presence interaction in 2004. Salix leaf number was unaffected by treatments in both years, but OTCs increased leaf size and mass in 2005. Salix reproduction and the phenology of flowers were unaffected by both treatments. Aphid densities were increased by OTCs but unaffected by goose presence in both years. While goose presence had little effect on aphid density or host plant phenology in this system, the OTC effects provide interesting insights into the possibility of phenological synchrony disruption. The advanced phenology of Salix effectively lengthens the growing season for the plant, but despite a close association with leaf maturity, the population dynamics of the aphid appeared to lack a similar phenological response, except for the increased population observed. 相似文献
14.
15.
Alan Gray Peter E. Levy Mark D. A. Cooper Timothy Jones Jenny Gaiawyn Sarah R. Leeson Susan E. Ward Kerry J. Dinsmore Julia Drewer Lucy J. Sheppard Nick J. Ostle Chris D. Evans Annette Burden Piotr Zieliński 《Global Change Biology》2013,19(4):1141-1150
Previous studies have shown a correspondence between the abundance of particular plant species and methane flux. Here, we apply multivariate analyses, and weighted averaging, to assess the suitability of vegetation composition as a predictor of methane flux. We developed a functional classification of the vegetation, in terms of a number of plant traits expected to influence methane production and transport, and compared this with a purely taxonomic classification at species level and higher. We applied weighted averaging and indirect and direct ordination approaches to six sites in the United Kingdom, and found good relationships between methane flux and vegetation composition (classified both taxonomically and functionally). Plant species and functional groups also showed meaningful responses to management and experimental treatments. In addition to the United Kingdom, we applied the functional group classification across different geographical regions (Canada and the Netherlands) to assess the generality of the method. Again, the relationship appeared good at the site level, suggesting some general applicability of the functional classification. The method seems to have the potential for incorporation into large‐scale (national) greenhouse gas accounting programmes (in relation to peatland condition/management) using vegetation mapping schemes. The results presented here strongly suggest that robust predictive models can be derived using plant species data (for use in national‐scale studies). For trans‐national‐scale studies, where the taxonomic assemblage of vegetation differs widely between study sites, a functional classification of plant species data provides an appropriate basis for predictive models of methane flux. 相似文献
16.
Phenological shifts and associated changes in the temporal match between trophic levels have been a major focus of the study of ecological consequences of climate change. Previously, the food peak has been thought to respond as an entity to warming temperatures. However, food peak architecture, that is, timings and abundances of prey species and the level of synchrony between them, determines the timing and shape of the food peak. We demonstrate this with a case example of three passerine prey species and their predator. We explored temporal trends in the timing, height, width, and peakedness of prey availabilities and explained their variation with food peak architecture and ambient temperatures of prebreeding and breeding seasons. We found a temporal match between the predator's breeding schedule and food availability. Temporal trends in the timing of the food peak or in the synchrony between the prey species were not found. However, the food peak has become wider and more peaked over time. With more peaked food availabilities, predator's breeding success will depend more on the temporal match between its breeding schedule and the food peak, ultimately affecting the timing of breeding in the predator population. The height and width of the food peak depended on the abundances and breeding season lengths of individual prey species and their reciprocal synchronies. Peakednesses of separate prey species' availability distributions alone explained the peakedness of the food peak. Timing and quantity of food production were associated with temperatures of various time periods with variable relevance in different prey species. Alternating abundances of early and late breeding prey species caused high annual fluctuation in the timing of the food peak. Interestingly, the food peak may become later even when prey species' schedules are advanced. Climate warming can thus produce unexpected changes in the food availabilities, intervening in trophic interactions. 相似文献
17.
Katherine S. Pope Volker Dose David Da Silva Patrick H. Brown Charles A. Leslie Theodore M. DeJong 《Global Change Biology》2013,19(5):1518-1525
The impact of climate change on the advancement of plant phenological events has been heavily studied in the last decade. Although the majority of spring plant phenological events have been trending earlier, this is not universally true. Recent work has suggested that species that are not advancing in their spring phenological behavior are responding more to lack of winter chill than increased spring heat. One way to test this hypothesis is by evaluating the behavior of a species known to have a moderate to high chilling requirement and examining how it is responding to increased warming. This study used a 60‐year data set for timing of leaf‐out and male flowering of walnut (Juglans regia) cultivar ‘Payne’ to examine this issue. The spring phenological behavior of ‘Payne’ walnut differed depending on bud type. The vegetative buds, which have a higher chilling requirement, trended toward earlier leaf‐out until about 1994, when they shifted to later leaf‐out. The date of male bud pollen shedding advanced over the course of the whole record. Our findings suggest that many species which have exhibited earlier bud break are responding to warmer spring temperatures, but may shift into responding more to winter temperatures (lack of adequate chilling) as warming continues. 相似文献
18.
Eunbi Kwon Willow B. English Emily L. Weiser Samantha E. Franks David J. Hodkinson David B. Lank Brett K. Sandercock 《Ecology and evolution》2018,8(2):1339-1351
Biological impacts of climate change are exemplified by shifts in phenology. As the timing of breeding advances, the within‐season relationships between timing of breeding and reproductive traits may change and cause long‐term changes in the population mean value of reproductive traits. We investigated long‐term changes in the timing of breeding and within‐season patterns of clutch size, egg volume, incubation duration, and daily nest survival of three shorebird species between two decades. Based on previously known within‐season patterns and assuming a warming trend, we hypothesized that the timing of clutch initiation would advance between decades and would be coupled with increases in mean clutch size, egg volume, and daily nest survival rate. We monitored 1,378 nests of western sandpipers, semipalmated sandpipers, and red‐necked phalaropes at a subarctic site during 1993–1996 and 2010–2014. Sandpipers have biparental incubation, whereas phalaropes have uniparental incubation. We found an unexpected long‐term cooling trend during the early part of the breeding season. Three species delayed clutch initiation by 5 days in the 2010s relative to the 1990s. Clutch size and daily nest survival showed strong within‐season declines in sandpipers, but not in phalaropes. Egg volume showed strong within‐season declines in one species of sandpiper, but increased in phalaropes. Despite the within‐season patterns in traits and shifts in phenology, clutch size, egg volume, and daily nest survival were similar between decades. In contrast, incubation duration did not show within‐season variation, but decreased by 2 days in sandpipers and increased by 2 days in phalaropes. Shorebirds demonstrated variable breeding phenology and incubation duration in relation to climate cooling, but little change in nonphenological components of traits. Our results indicate that the breeding phenology of shorebirds is closely associated with the temperature conditions on breeding ground, the effects of which can vary among reproductive traits and among sympatric species. 相似文献
19.
Luis H. Acosta Salvatierra Richard J. Ladle Humberto Barbosa Ricardo A. Correia Ana C. M. Malhado 《Biotropica》2017,49(5):753-760
The Caatinga is a botanically unique semi‐arid ecosystem in northeast Brazil whose vegetation is adapted to the periodic droughts that characterize this region. However, recent extreme droughts events caused by anthropogenic climate change have challenged its ecological resilience. Here, we evaluate how deforestation and protection status affect the response of the Caatinga vegetation to drought. Specifically, we compared vegetation responses to drought in natural and deforested areas as well as inside and outside protected areas, using a time‐series of satellite‐derived Normalized Difference Vegetation Index (NDVI) and climatic data for 2008–2013. We observed a strong effect of deforestation and land protection on overall vegetation productivity and in productivity dynamics in response to precipitation. Overall, deforested areas had significantly lower NDVI and delayed greening in response to precipitation. By contrast, strictly protected areas had higher productivity and considerable resilience to low levels of precipitation, when compared to sustainable use or unprotected areas. These results highlight the importance of protected areas in protecting ecosystem processes and native vegetation in the Caatinga against the negative effects of climate change and deforestation. Given the extremely small area of the Caatinga currently under strict protection, the creation of new conservation areas must be a priority to ensure the sustainability of ecological processes and to avoid further desertification. 相似文献
20.
Nicola Saino Gaia Bazzi Emanuele Gatti Manuela Caprioli Jacopo G. Cecere Cristina D. Possenti Andrea Galimberti Valerio Orioli Luciano Bani Diego Rubolini Luca Gianfranceschi Fernando Spina 《Molecular ecology》2015,24(8):1758-1773
Dissecting phenotypic variance in life history traits into its genetic and environmental components is at the focus of evolutionary studies and of pivotal importance to identify the mechanisms and predict the consequences of human‐driven environmental change. The timing of recurrent life history events (phenology) is under strong selection, but the study of the genes that control potential environmental canalization in phenological traits is at its infancy. Candidate genes for circadian behaviour entrained by photoperiod have been screened as potential controllers of phenological variation of breeding and moult in birds, with inconsistent results. Despite photoperiodic control of migration is well established, no study has reported on migration phenology in relation to polymorphism at candidate genes in birds. We analysed variation in spring migration dates within four trans‐Saharan migratory species (Luscinia megarhynchos; Ficedula hypoleuca; Anthus trivialis; Saxicola rubetra) at a Mediterranean island in relation to Clock and Adcyap1 polymorphism. Individuals with larger number of glutamine residues in the poly‐Q region of Clock gene migrated significantly later in one or, respectively, two species depending on sex and whether the within‐individual mean length or the length of the longer Clock allele was considered. The results hinted at dominance of the longer Clock allele. No significant evidence for migration date to covary with Adcyap1 polymorphism emerged. This is the first evidence that migration phenology is associated with Clock in birds. This finding is important for evolutionary studies of migration and sheds light on the mechanisms that drive bird phenological changes and population trends in response to climate change. 相似文献