共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
P Tucci G Porta M Agostini D Dinsdale I Iavicoli K Cain A Finazzi-Agró G Melino A Willis 《Cell death & disease》2013,4(3):e549
The long-term health risks of nanoparticles remain poorly understood, which is a serious concern given their prevalence in the environment from increased industrial and domestic use. The extent to which such compounds contribute to cellular toxicity is unclear, and although it is known that induction of oxidative stress pathways is associated with this process, the proteins and the metabolic pathways involved with nanoparticle-mediated oxidative stress and toxicity are largely unknown. To investigate this problem further, the effect of TiO2 on the HaCaT human keratinocyte cell line was examined. The data show that although TiO2 does not affect cell cycle phase distribution, nor cell death, these nanoparticles have a considerable and rapid effect on mitochondrial function. Metabolic analysis was performed to identify 268 metabolites of the specific pathways involved and 85 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. Importantly, the uptake of nanoparticles into the cultured cells was restricted to phagosomes, TiO2 nanoparticles did not enter into the nucleus or any other cytoplasmic organelle. No other morphological changes were detected after 24-h exposure consistent with a specific role of mitochondria in this response. 相似文献
3.
Marianna Santonastaso Filomena Mottola Nicola Colacurci Concetta Iovine Severina Pacifico Marcella Cammarota Fulvio Cesaroni Lucia Rocco 《Molecular reproduction and development》2019,86(10):1369-1377
Titanium dioxide nanoparticles (TiO2‐NPs) are one of the most widely engineered nanoparticles used. The study has been focused on TiO 2‐NPs genotoxic effects on human spermatozoa in vitro. TiO 2‐NPs are able to cross the blood–testis barrier induced inflammation, cytotoxicity, and gene expression changes that lead to impairment of the male reproductive system. This study presents new data about DNA damage in human sperms exposed in vitro to two n‐TiO 2 concentrations (1 µg/L and 10 µg/L) for different times and the putative role of reactive oxygen species (ROS) as mediators of n‐TiO 2 genotoxicity. Primary n‐TiO 2 characterization was performed by transmission electron microscopy. The dispersed state of the n‐TiO 2 in media was spectrophotometrically determined at 0, 24, 48, and 72 hr from the initial exposure. The genotoxicity has been highlighted by different experimental approaches (comet assay, terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] test, DCF assay, random amplification of polymorphic DNA polymerase chain reaction [RAPD‐PCR]). The comet assay showed a statistically significant loss of sperm DNA integrity after 30 min of exposure. Increased threshold of sperm DNA fragmentation was highlighted after 30 min of exposure by the TUNEL Test. Also, the RAPD‐PCR analysis showed a variation in the polymorphic profiles of the sperm DNA exposed to n‐TiO 2. The evidence from the DCF assay showed a statistically significant increase in intracellular ROS linked to n‐TiO 2 exposure. This research provides the evaluation of n‐TiO 2 potential genotoxicity on human sperm that probably occurs through the production of intracellular ROS. 相似文献
4.
Jie Lu Monty Liong Sean Sherman Tian Xia Michael Kovochich Andre E. Nel Jeffrey I. Zink Fuyuhiko Tamanoi 《NanoBioTechnology》2007,3(2):89-95
Biocompatible mesoporous silica nanoparticles, containing the fluorescence dye fluorescein isothiocyanate (FITC), provide
a promising system to deliver hydrophobic anticancer drugs to cancer cells. In this study, we investigated the mechanism of
uptake of fluorescent mesoporous silica nanoparticles (FMSN) by cancer cells. Incubation with FMSN at different temperatures
showed that the uptake was higher at 37°C than at 4°C. Metabolic inhibitors impeded uptake of FMSN into cells. The inhibition
of FMSN uptake by nocodazole treatment suggests that microtubule functions are required. We also report utilization of mesoporous
silica nanoparticles to deliver a hydrophobic anticancer drug paclitaxel to PANC-1 cancer cells and to induce inhibition of
proliferation. Mesoporous silica nanoparticles may provide a valuable vehicle to deliver hydrophobic anticancer drugs to human
cancer cells. 相似文献
5.
J. A. Raven 《Plant, cell & environment》2001,24(2):261-265
A model is presented which quantifies a possible role for the carbonic anhydrase in the mitochondrial matrix of Chlamydomonas reinhardtii which incorporates the observation that the expression of this enzyme is increased under growth conditions in which the expression of the carbon dioxide-concentrating mechanism is increased. It is assumed that the inorganic carbon enters the cytosol from the medium, and leaves the cytosol to the plastids, as HCO3− and that there is negligible carbonic anhydrase activity in the cytosol. The role of the mitochondrial carbonic anhydrase is suggested to be the conversion to HCO3– of the CO2 produced in the mitochondria in the light from tricarboxylic acid cycle activity and from decarboxylation of glycine in any photorespiratory carbon oxidation cycle activity which is not suppressed by the carbon concentrating mechanism. If there is a HCO3− channel in the inner mitochondrial membrane then almost all of the inorganic carbon leaves the mitochondria as HCO3−, thus limiting the potential for CO2 leakage through the plasmalemma. This mechanism could increase inorganic C supply to ribulose bisphosphate carboxylase-oxygenase by some 10% at the energetic expense of less than 1% of the total ATP generation by plastids plus mitochondria. 相似文献
6.
7.
Ana K.S. Braz Diógenes S. Moura Anderson S.L. Gomes Tymish Y. Ohulchanskyy Guanying Chen Maixian Liu Jossana Damasco Renato E. de Araujo Paras N. Prasad 《Journal of biophotonics》2018,11(4)
Core‐shell nanostructures associated with photonics techniques have found innumerous applications in diagnostics and therapy. In this work, we introduce a novel core‐shell nanostructure design that serves as a multimodal optical imaging contrast agent for dental adhesion evaluation. This nanostructure consists of a rare‐earth‐doped (NaYF4:Yb 60%, Tm 0.5%)/NaYF4 particle as the core (hexagonal prism, ~51 nm base side length) and the highly refractive TiO2 material as the shell (~thickness of 15 nm). We show that the TiO2 shell provides enhanced contrast for optical coherence tomography (OCT), while the rare‐earth‐doped core upconverts excitation light from 975 nm to an emission peaked at 800 nm for photoluminescence imaging. The OCT and the photoluminescence wide‐field images of human tooth were demonstrated with this nanoparticle core‐shell contrast agent. In addition, the described core‐shell nanoparticles (CSNps) were dispersed in the primer of a commercially available dental bonding system, allowing clear identification of dental adhesive layers with OCT. We evaluated that the presence of the CSNp in the adhesive induced an enhancement of 67% scattering coefficient to significantly increase the OCT contrast. Moreover, our results highlight that the upconversion photoluminescence in the near‐infrared spectrum region is suitable for image of deep dental tissue. 相似文献
8.
Zahra Mohammadalipour Marveh Rahmati Alireza Khataee Mohammad A. Moosavi 《Journal of cellular physiology》2020,235(11):8246-8259
The manipulation of autophagy provides a new opportunity for highly effective anticancer therapies. Recently, we showed that photodynamic therapy (PDT) with nitrogen-doped titanium dioxide (N-TiO2) nanoparticles (NPs) could promote the reactive oxygen species (ROS)-dependent autophagy in leukemia cells. However, the differential autophagic effects of N-TiO2 NPs in the dark and light conditions and the potential of N-TiO2-based PDT for the treatment of melanoma cells remain unknown. Here we show that depending on the visible-light condition, the autophagic response of human melanoma A375 cells to N-TiO2 NPs switches between two different statuses (ie., flux or blockade) with the opposite outcomes (ie., survival or death). Mechanistically, low doses of N-TiO2 NPs (1-100 µg/ml) stimulate a nontoxic autophagy flux response in A375 cells, whereas their photo-activation leads to the impairment of the autophagosome-lysosome fusion, the blockade of autophagy flux and consequently the induction of RIPK1-mediated necroptosis via ROS production. These results confirm that photo-controllable autophagic effects of N-TiO2 NPs can be utilized for the treatment of cancer, particularly melanoma. 相似文献
9.
Shao N Krieger-Liszkay A Schroda M Beck CF 《The Plant journal : for cell and molecular biology》2007,50(3):475-487
A reporter system for the assay of reactive oxygen species (ROS) was developed in Chlamydomonas reinhardtii, a plant model organism well suited for the application of inhibitors and generators of various types of ROS. This system employs various HSP70A promoter segments fused to a Renilla reniformis luciferase gene as a reporter. Transformants with the complete HSP70A promoter were inducible by both hydrogen peroxide and singlet oxygen. Constructs that lacked upstream heat-shock elements (HSEs) were inducible by hydrogen peroxide, indicating that this induction does not require such HSEs. Rather, downstream elements located between positions -81 to -149 with respect to the translation start site appear to be involved. In contrast, upstream sequences are essential for the response to singlet oxygen. Thus, activation by singlet oxygen appears to require promoter elements that are different from those used by hydrogen peroxide. ROS generated endogenously by treatment of the alga with metronidazole, protoporphyrin IX, dinoterb or high light intensities were detected by this reporter system, and distinguished as production of hydrogen peroxide (metronidazole) and singlet oxygen (protoporphyrin IX, dinoterb, high light). This system thus makes it possible to test whether, under varying environmental conditions including the application of abiotic stress, hydrogen peroxide or singlet oxygen or both are produced. 相似文献
10.
Nanopowders of novel three-dimensional AgI coordination polymer, [Ag2(μ8-SB)]n (1) [H2SB = 4-[(4-hydroxyphenyl)sulfonyl]-1-benzenol] has been synthesized by the reaction of SB2− and AgNO3 by a sonochemical method. Reaction conditions, such as the concentration of the initial reagents and power of the ultrasonic device played important roles in the size, morphology and growth process of the final products. For the first time silver nanoparticles were synthesized from [Ag2(μ8-SB)]n (1) coordination polymer by calcinations and hydrothermal methods. These nanopowders and nanoparticles were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM); transmission electron microscopy (TEM) and energy-dispersive X-ray spectra (EDS). Thermal stability and emission properties of nano and crystal samples of compound 1 were studied and compared with each other. 相似文献
11.
In this report, we describe the effect of Gemini surfactants1, 6-Bis (N, N-hexadecyldimethylammonium) adipate (16-6-16) on synthesis, stability and antibacterial activity of silver nanoparticles (AgNPs). The stabilizing effect of Gemini surfactant and aggregation behavior of AgNPs was evaluated by plasmonic property and morphology of the AgNPs were characterized by UV–vis spectroscopy, Dynamic Light Scattering (DLS), X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Energy dispersive X-ray analysis (EDX) techniques. Interestingly, the formation of quite mono-dispersed spherical particles was found. Apart from the stabilizing role, the Gemini surfactant has promoted the agglomeration of individual AgNPs in small assemblies whose Plasmon band features differed from those of the individual nanoparticles. The antibacterial activity of the synthesized AgNPs on Gram-negative and Gram-positive bacterium viz., E. coli and S. aureus was carried out by plate count, growth kinetics and cell viability assay. Furthermore, the mechanism of antibacterial activity of AgNPs was tested by Zeta potential and DLS analysis, to conclude that surface charge of AgNPs disrupts the cells causing cell death. 相似文献
12.
In this paper, we constructed a new electrochemical biosensor for DNA detection based on a molecule recognition technique. In this sensing protocol, a novel dual-labeled DNA probe (DLP) in a stem–loop structure was employed, which was designed with dabcyl labeled at the 3′ end as a guest molecule, and with a Pb nanoparticle labeled at the 5′ end as electrochemical tag to indicate hybridization. One α-cyclodextrin-modified electrode (α-CD/MCNT/GCE) was used for capturing the DNA hybridization. Initially, the DLP was in the “closed” state in the absence of the target, which shielded dabcyl from the bulky α-CD/MCNT/GCE conjugate due to a steric effect. After hybridization, the loop sequence (16 bases) formed a rigid duplex with the target, breaking the relatively shorter stem duplex (6 bases). Consequently, dabcyl was forced away from the Pb nanoparticle and became accessible by the electrode. Therefore, the target hybridization event can be sensitively transduced via detecting the electrochemical reduction current signal of Pb. Using this method, as low as 7.1 × 10−10 M DNA target had been detected with excellent differentiation ability for even a single mismatch. 相似文献
13.
Engineering Surface Amine Modifiers of Ultrasmall Gold Nanoparticles Supported on Reduced Graphene Oxide for Improved Electrochemical CO2 Reduction 下载免费PDF全文
Yong Zhao Caiyun Wang Yuqing Liu Douglas R. MacFarlane Gordon G. Wallace 《Liver Transplantation》2018,8(25)
Ultrasmall gold (Au) nanoparticles with high mass activity have great potential for practical applications in CO2 electroreduction. However, these nanoparticles often suffer from poor product selectivity since their abundant low‐coordinated sites are favorable for H2 evolution. In this work, a catalyst, reduced graphene oxide supported ultrasmall Au nanoparticles (≈2.4 nm) is developed which delivers high Au‐specific mass activities (>100 A g?1) and good Faradaic efficiencies (32–60%) for the CO2‐to‐CO conversion at moderate overpotentials (450–600 mV). The efficiencies can be improved to 59–75% while retaining the ultrahigh mass activities via a simple amine‐modification strategy. In addition, an amine‐structure‐dependent effect is revealed: linear amines promote the CO formation whereas the branched polyamine greatly depresses it; the increasing alkyl chain length boosts the promotion effect of linear amines. The strong Au‐amine interaction and molecular configuration induced amine coverage on the ultrasmall Au NPs may contribute to this effect. 相似文献
14.
15.
Pablo Docampo Morgan Stefik Stefan Guldin Robert Gunning Nataliya A. Yufa Ning Cai Peng Wang Ullrich Steiner Ulrich Wiesner Henry J. Snaith 《Liver Transplantation》2012,2(6):676-682
A new self‐assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO2 films is presented, based on the triblock terpolymer poly(isoprene ‐ b ‐ styrene ‐ b ‐ ethylene oxide). This new materials route allows the co‐assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state‐of‐the‐art nanoparticle‐based photoanodes employed in solid‐state dye‐sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub‐bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state‐of‐the‐art organic dye, C220. As a consequence, the co‐assembled mesoporous metal oxide system outperformed the conventional nanoparticle‐based electrodes fabricated and tested under the same conditions, exhibiting solar power‐conversion efficiencies of over 5%. 相似文献
16.
Mesoporous TiO2 Beads Offer Improved Mass Transport for Cobalt‐Based Redox Couples Leading to High Efficiency Dye‐Sensitized Solar Cells 下载免费PDF全文
Leo‐Philipp Heiniger Fabrizio Giordano Thomas Moehl Michael Grätzel 《Liver Transplantation》2014,4(12)
Overcoming ionic diffusion limitations is essential for the development of high‐efficiency dye‐sensitized solar cells based on cobalt redox mediators. Here, improved mass transport is reported for photoanodes composed of mesoporous TiO2 beads of varying pore sizes and porosities in combination with the high extinction YD2‐o‐C8 porphyrin dye. Compared to a photoanode made of 20 nm‐sized TiO2 particles, electrolyte diffusion through these films is greatly improved due to the large interstitial pores between the TiO2 beads, resulting in up to 70% increase in diffusion‐limited current. Simultaneously, transient photocurrent measurements reveal no mass transport limitations for films of up to 10 μm thickness. In contrast, standard photoanodes made of 20 nm‐sized TiO2 particles show non‐linear behavior in photocurrent under 1 sun illumination for a film thickness as low as 7 μm. By including a transparent thin mesoporous TiO2 underlayer in order to reduce optical losses at the fluorine‐doped tin oxide (FTO)‐TiO2 interface, an efficiency of 11.4% under AM1.5G 1 sun illumination is achieved. The combination of high surface area, strong scattering behavior, and high porosity makes these mesoporous TiO2 beads particularly suitable for dye‐sensitized solar cells using bulky redox couples and/or viscous electrolytes. 相似文献
17.
Summary A new utilization of the biolistic gun was developed for the direct introduction of nitrogen-fixing bacteria (Azotobacter vinelandii) into strawberry (Fragaria x ananassa) tissues. This was the first case of using living bacteria as microprojectiles for the bombardment of plant tissues. Bacterial
cells, adhered to tungsten particles, were accelerated by a nitrogen-powered device, and delivered into the target leaves
and regenerating shoot meristems. The presence of bacteria in the developing strawberry callus tissues and regenerating plants
was detected by microscopy, acetylene reduction assay, and selective polymerase chain reaction. Practically, the elaborated
method proved to be suitable for the establishment of artificial intereellular, associations between nitrogen-fixing bacteria
and higher plants. 相似文献
18.
Sara Kamalzare Zahra Noormohammadi Pooneh Rahimi Fatemeh Atyabi Shiva Irani Farnaz Sadat Mirzazadeh Tekie Fatemeh Mottaghitalab 《Journal of cellular physiology》2019,234(11):20554-20565
Gene therapy, including small interfering RNA (siRNA) technology, is one of the leading strategies that help to improve the outcomes of the current therapeutic systems against HIV-1 infection. The successful therapeutic application of siRNAs requires their safe and efficient delivery to specific cells. Here, we introduce a superparamagnetic iron oxide nanoparticle (SPION) for delivering siRNA against HIV-1 nef (anti-nef siRNA) into two cell lines, HEK293 and macrophage RAW 264.7. SPIONs were coated with trimethyl chitosan (TMC), and thereafter, different concentrations of SPION–TMC were coated with different ratios of a carboxymethyl dextran (CMD) to modify the physicochemical properties and improve the biological properties of the nanocarriers. The nanoparticles exhibited a spherical shape with an average size of 112 nm. The obtained results showed that the designed delivery route enhanced the uptake of siRNA into both HEK293 and RAW 264.7 cells compared with control groups. Moreover, CMD–TMC–SPIONs containing anti-nef siRNA significantly reduced the expression of HIV-1 nef in HEK293 stable cells. The modified siRNA-loaded SPIONs also displayed no toxicity or apoptosis-inducing effects on the cells. The CMD–TMC–SPIONs are suggested as potential nanocarriers for siRNA delivery in gene therapy of HIV-1 infection. 相似文献
19.
A novel and sensitive immunosensor has been developed by electro-depositing gold nanoparticles on to a Prussian Blue-modified
glassy carbon electrode for determination of hepatitis B surface antigen (HBsAg). After the developed immunosensor was incubated
with different concentrations of HBsAg samples at 37°C for 15 min, the current response decreased with an increasing HBsAg
concentration in the sample solution. The decreased percentage of the current was proportional to HBsAg concentration ranging
from 2 to 300 ng HbsAg ml−1 with a detection limit of 0.42 ng HbsAg ml−1 (S/N = 3). Analytical results of 50 specimens using the developed immunosensor showed satisfactory agreement with those using
ELISA, indicating the method to be a promising alternative for detecting HBsAg in clinical diagnosis. 相似文献
20.
In the medium of H2SO4 and in the presence of TiO2+, gold nanoparticles in size of 10 nm exhibited a weak surface plasmon resonance scattering (SPRS) peak at 775 nm. Upon addition
of trace H2O2, the yellow complex [TiO(H2O2)]2+ formed that cause the gold nanoparticles aggregations to form bigger gold nanoparticle clusters in size of about 900 nm,
and the SPRS intensity at 775 nm (I) enhanced greatly. The enhanced intensity ΔI was linear to the H2O2 concentration in the range of 0.025–48.7 μg/mL, with a detection limit of 0.014 μg/mL H2O2. This SPRS method was applied to determining H2O2 in water samples with satisfactory results. 相似文献