首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing evidence that the global climate change is already having measurable biological impacts. However, no study (based on actual data) has assessed the influence of the global warming on communities in rivers. We analyzed long‐term series of fish (1979–1999) and invertebrate (1980–1999) data from the Upper Rhône River at Bugey to test the influence of climatic warming on both communities. Between the periods of 1979–1981 and 1997–1999, the average water temperature of the Upper Rhône River at Bugey has increased by about 1.5°C due to atmospheric warming. In the same period, several dams have been built from 12.5 to 85 km upstream of our study segment and a nuclear power plant has been built on it. Changes in the community structure were summarized using multivariate analysis. The variability of fish abundance was correlated with discharge and temperature during the reproduction period (April–June): low flows and high temperatures coincided with high fish abundance. Beyond abundance patterns, southern, thermophilic fish species (e.g. chub, and barbel) as well as downstream, thermophilic invertebrate taxa (e.g. Athricops, Potamopyrgus) progressively replaced northern, cold‐water fish species (e.g. dace) and upstream, cold‐water invertebrate taxa (e.g. Chloroperla, Protoneumura). These patterns were significantly correlated with thermal variables, suggesting that shifts were the consequences of climatic warming. All analyses were carried out using statistics appropriate for autocorrelated time series. Our results were consistent with previous studies dealing with relationships between fish or invertebrates and water temperature, and with predictions of the impact of climatic change on freshwater communities. The potential confounding factors (i.e. dams and the nuclear power plant) did not seem to influence the observed trends.  相似文献   

2.
3.
One of the most commonly predicted effects of global ocean warming on marine communities is a poleward shift in the distribution of species with an associated replacement of cold‐water species by warm‐water species. Such predictions are imprecise and based largely on broad correlations in uncontrolled studies that examine changes in species composition and abundance relative to seawater temperature. Before‐After‐Control‐Impact (BACI) analyses of the effects of a large thermal discharge shows that an induced 3.4 deg. C rise in seawater temperature over 10 years along 2 km of rocky coastline resulted in significant community‐wide changes in 150 species of algae and invertebrates relative to controls. Contrary to predictions from biogeographic models, there was no trend towards warm‐water species with southern geographic affinities replacing cold‐species with northern affinities. Instead, communities were greatly altered in apparently cascading responses to changes in abundance of several habitat‐forming taxa, particularly subtidal kelps (e.g. Pterygophora californica) and intertidal foliose red algae (e.g. Mazzaella flaccida). Many temperature sensitive algae decreased greatly in abundance, whereas many invertebrate grazers increased. The results indicate that the responses of temperate reef communities to ocean warming can be strongly coupled to direct effects on habitat‐forming taxa and indirect effects operating through ecological interactions. Given our understanding of temperate reef ecology and its local variability, the results also suggest that accurate predictions of the effects of global ocean warming will be difficult to make.  相似文献   

4.
In southwestern British Columbia (BC, Canada) and within a relatively small geographic area, lotic environments range from streams in coastal rainforests, to streams in arid continental grasslands, to very large rivers. Little is known about the invertebrate communities in large rivers in general, or in the streams of continental BC. The purpose of this study was to determine whether the benthic invertebrate community structure changes spatially between small coastal and small interior streams; between small streams versus large rivers; and whether changes in the benthic community are related to the environmental conditions. Kicknet samples and environmental data were collected from three coastal streams, three continental streams and two large rivers (discharge of 781 and 3620 m3/s, respectively). The large river sites had low invertebrate abundance, species richness and diversity, relative to the small streams. The coastal streams had the highest species richness and the continental streams had the highest invertebrate abundance. A number of taxa were specific to each class of stream. Invertebrate abundance decreased with river size, and increased with elevation, pH, conductivity, alkalinity, NO2NO3-N, total Kejldahl nitrogen and percent carbon in suspended solids.  相似文献   

5.
6.
Macroinvertebrate communities in Western European rivers have changed substantially in recent decades. Understanding the causes is challenging because improvements in water quality have coincided with climatic variations over this period. Using data covering >2300 rivers and 21 years (1991–2011) across England and Wales, we analysed family‐level distributions and nationwide trends in prevalence (proportion of sampling locations where an organism was present) to diagnose the causes of ecological change. Our aims were to: (i) reveal the taxa driving assemblage‐level trends; (ii) identify the main changes in family‐level prevalence and distribution patterns; and (iii) test whether changes were accounted for by improving water quality, increasing temperatures or variations in discharge. While previous analyses revealed increasing richness among British river invertebrates, a partial turnover of taxa is now evident. Two distinct components of temporal trend have comprised: (i) overall increases or decreases in taxon prevalence over 21 years, which correlated with pollution sensitivity and discharge; and (ii) short‐term variations in prevalence that correlated primarily with temperature and nutrient concentrations. The longer‐term changes in prevalence were reflected in expansions or contractions in families' distributions linked to water quality, with little evidence of shifts consistent with increasing temperatures. Although these monitoring data had limitations (e.g., family‐level data, few headwaters), they provide no clear evidence of long‐term climate effects on invertebrates; the one feature consistent with climate warming – a small northward expansion of the range of many taxa – was accounted for by large improvements in water quality in northern England. Nevertheless, changes linked to discharge and temperature over the shorter‐term (<2 years) point to the climatic sensitivity of invertebrate communities. It is therefore likely that any long‐term climatic changes since 1990 have been outweighed by the strength and geographical extent of the recovery from poor water quality.  相似文献   

7.
8.
A critical component in the effort to restore the Kissimmee River ecosystem is the reestablishment of an aquatic invertebrate community typical of free‐flowing rivers of the southeastern United States. This article evaluates early responses of benthic and snag‐dwelling macroinvertebrates to restoration of flow and habitat structure following Phase I construction (interim period) of the Kissimmee River Restoration Project. Replicate benthic and snag samples were collected from remnant river channels in Pool A (Control site), and Pool C, the site of the first phase of restoration (Impact site). Samples were collected quarterly for 2 years prior to construction (baseline) and monthly or quarterly for 3 years following Phase I construction and restoration of flow. Baseline benthic data indicate a community dominated by taxa tolerant of organic pollution and low levels of dissolved oxygen, including the dipterans Chaoborus americanus (Chaoboridae) and the Chironomus/Goeldichironomus group (Chironomidae). Baseline snag data indicate a community dominated by gathering‐collectors, shredders, and scrapers. Passive filtering‐collector invertebrates were rare. Following restoration of flow, benthic invertebrate communities are numerically dominated by lotic taxa, including bivalves and sand‐dwelling chironomids (e.g. Polypedilum spp., Cryptochironomus spp., and Tanytarsini). Snags within the Phase I area support an invertebrate community dominated by passive filtering‐collectors including Rheotanytarsus spp. (Chironomidae) and Cheumatopsyche spp. (Hydropsychidae). Results indicate that restoration of flow has resulted in ecologically significant changes to the river habitat template not observed in Pool A. Observed shifts in benthic and snag macroinvertebrate community structure support previously developed hypotheses for macroinvertebrate responses to hydrologic restoration.  相似文献   

9.
10.
Biological and hydrological data collected from 1984 to 1998 in three Guinean rivers were analysed to evaluate adverse effects of biological and chemical larvicides applied for the control of blackfly Simulium damnosum, vector of the parasitic digenean worm Onchocerca volvulus. Although most of the variation in invertebrate populations were flow-related, larvicide applications affect community structure reducing the abundance of the most sensible taxa. In spite of these results, in the long term the rarefaction of some invertebrate taxa (i.e. Tricorythidae) does not cause a significant reduction of total invertebrate densities because of the corresponding increase of other taxa (i.e. Hydropsychidae and Philopotamidae). The functional structure of the communities is also not affected.  相似文献   

11.
We studied chlorophyll a (chl. a), biovolume and species composition of benthic algae and phytoplankton in the eutrophic lower River Spree in 1996. The chl. a concentration was estimated as 3.5 (2.7–4.5) µg/cm2 for epipsammon, 9.4 (7.4–11.9) µg/cm2 for epipelon and 6.7 (5.7–7.8) µg/cm2 for the epilithon (median and 95% C. L.). The mean total biomass of benthic algae was significantly higher (6.0 µg chl. a/cm2) than the areal chl. a content of the pelagic zone (1.6 µg chl. a/cm2). Although certain phytoplankton taxa were abundant in the periphyton, benthic taxa generally dominated the assemblages. Seasonal dynamics of benthic algae were probably controlled by light and nitrate supply (sand), discharge fluctuations (sand, mud) and invertebrate grazing (stones). This paper shows the importance of benthic algae even in phytoplankton‐rich lowland rivers with sandy or muddy sediments. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
Endorheic lakes of the northern Great Plains encompass a wide range of environmental parameters (e.g., salinity, pH, DOC, Ca, nutrients, depth) that vary 1000‐fold among sites and through the past 2000 years due to variation in basin hydrology and evaporative forcing. However, while many environmental parameters are known to individually influence zooplankton diversity and taxonomic composition, relatively little is known of the hierarchical relationships among potential controls or of how regulatory mechanisms may change in response to climate variation on diverse scales. To address these issues, we surveyed 70 lakes within a 100 000 km2 prairie region to simulate the magnitude of environmental change expected to occur over 100–1000 years and to quantify the unique and interactive effects of diverse environmental parameters in regulating pelagic invertebrate community structure at that scale. Multivariate analyses showed that salinity was the principal correlate of changes in invertebrate composition among lakes, with a sequential loss of taxa between salinities of 4 and 50 g total dissolved solids L?1 until one to two species predominated in highly saline systems. In contrast, changes in the concentrations of Ca2+ and other mineral nutrients exerted secondary controls of invertebrate assemblages independent of salinity, whereas lake depth provided a tertiary regulatory mechanism structuring species composition. In contrast to these large‐scale hierarchical patterns, seasonal surveys (May, July, September) of a subset of 21 lakes in each of 2003–2005 revealed that annual meteorological variation had no measurable effect on pelagic invertebrates, despite large differences in temperature, precipitation, and evaporation arising from regional droughts. Together these findings show that pelagic invertebrate communities in saline lakes are resilient to interannual variability in climate, but suggest that lakes of the northern Great Plains may provide a sensitive model to forecast centennial effects of future climate change.  相似文献   

14.
1. Floods and low flows are hydrological events that influence river ecosystems, but few studies have compared their relative importance in structuring invertebrate communities. Invertebrates were sampled in riffles and runs at eight sites along 40 km of a New Zealand gravel‐bed river every 1–3 months over 2.5 years, during which time a number of large flood and low flow events occurred. Flows were high in winter and spring, and low in summer and autumn. Four flow‐related variables were calculated from hydrological data: flow on the day of sampling (Qsample), maximum and minimum flow between successive samples (Qmax and Qmin, respectively), and the number of days since the last bed‐moving flood (Ndays). 2. The invertebrate community was summarised by relative densities of the 19 most abundant taxa and four biotic metrics [total abundance, taxon richness, the number of Ephemeroptera, Plecoptera and Trichoptera taxa (i.e. EPT richness), and per cent EPT]. Invertebrate density fluctuated greatly, and was high in summer and autumn, and low during winter and spring. Stepwise multiple regression (SMR) analysis was used to investigate relationships between the invertebrate community and season, flow, habitat and water temperature. 3. Seasonal variables were included in almost 50% of the SMR models, while flow‐related variables were included in >75% of models. Densities of many taxa were negatively correlated to Qmin and Qmax, and positively correlated to Ndays, suggesting that while high flows reduced invertebrate densities, densities recovered with increasing time following a flood. Although season and flow were confounded in this study, many of the taxa analysed display little seasonal variation in abundance, suggesting that flow‐related variables were more important in structuring communities than seasonal changes in density associated with life‐cycles. 4. Five discrete flood and low flow events were identified and changes to invertebrate communities before and after these events examined. Invertebrate densities decreased more commonly after floods than after low flows, and there was a significant positive relationship between the number of taxa showing reductions in density and flood magnitude. Densities of most invertebrates either remained unchanged, or increased after low flow events, except for four taxa whose densities declined after a very long period (up to 9 months) of low flow. This decline was attributed to autogenic sloughing of thick periphyton communities and subsequent loss of habitat for these taxa. 5. Invertebrate communities changed more after floods and the degree of change was proportional to flood magnitude. Community similarity increased with increasing time since the last disturbance, suggesting that the longer stable flows lasted, the less the community changed. These results suggest that invertebrate communities in the Waipara River were controlled by both floods and low flows, but that the relative effects of floods were greater than even extended periods of extreme low flow. 6. Hydraulic conditions in riffles and runs were measured throughout the study. Riffles had consistently faster velocities, but were shallower and narrower than runs at all measured flows. Invertebrate density in riffles was expressed as a percentage of total density and regressed against the flow‐related variables to see whether invertebrate locations changed according to flow. Significant negative relationships were observed between the per cent density of common taxa in riffles and Qsample, Qmax and Qmin. This result suggests either that these animals actively drifted into areas of faster velocity during low flows, or that their densities within riffles increased as the width of these habitats declined.  相似文献   

15.
1. Flow permanence (the proportion of time that flowing water is present) strongly influences benthic invertebrate assemblages in ephemeral and intermittent river reaches. Effects of varying flow permanence on hyporheic invertebrate assemblages are not well understood, and have not previously been studied at large spatial scales. 2. We used a 52‐km long flow‐permanence gradient in the alluvial Selwyn River, New Zealand to assess hyporheic assemblage responses to variation in flow permanence and surface–subsurface exchange. The Selwyn mainstem consists of perennial and temporary reaches embedded in longer downwelling (losing) and upwelling (gaining) sections. 3. We predicted that hyporheic invertebrate diversity, density and assemblage stability would increase with increasing flow permanence. We further predicted that assemblage structure would be influenced by the relative contribution of downwelling and upwelling water at the reach‐scale. 4. Hyporheic invertebrates were collected at 15 river cross‐sections over a 13‐month period. As predicted, hyporheic taxon richness, density and assemblage stability varied directly with flow permanence. The distribution of taxa along the flow permanence gradient appeared to be related to desiccation resistance. However, it is possible that proximity to colonist sources also contributed to distribution patterns. 5. Taxon richness was significantly higher at sites in the gaining section compared with the losing section. Sites with high flow permanence in the gaining and losing sections supported distinct hyporheic assemblages, characterised by amphipods and isopods in the gaining section, and ostracods, Hydra sp. and the mayfly Deleatidium spp. in the losing section. 6. Results of the study suggest an expansion of the scope of the Hyporheic Corridor Concept to include large hyporheic flowpaths associated with unbounded alluvial plains rivers. Hyporheic assemblages in alluvial rivers are strongly influenced by large‐scale flow permanence gradients, large‐scale surface water–groundwater exchange, and their interactions.  相似文献   

16.
1. We studied chironomid communities of four rivers in south‐eastern Finland, differing in their water quality, during summer 2004 using the Chironomid Pupal Exuvial Technique, CPET. The aims of the study were to (i) test the adequacy of the generic‐level identification in the CPET method, (ii) define the emergence patterns of chironomid taxa classified as intolerant to organic pollution, (iii) assess the tolerance levels of intolerant chironomids and (iv) identify taxa most indicative of good water quality. 2. Procrustean rotation analysis indicated very strong concordance between the ordinations using either species or genus‐level data, suggesting that generic‐level identification of chironomids is adequate for biomonitoring based on CPET. However, when only a few taxa occur in great numbers, it may be advisable to identify these to the species level, especially if these taxa are important indicators of the impact in question. 3. The detection of a particular species may require accurate timing of sampling, whereas a species‐rich genus might be detected throughout a season. Given that the emergence of chironomid species may vary from year‐to‐year and between sampling sites, community differences detected at the species level may be related to between‐site variation in species’ emergence patterns rather than true differences in species composition. 4. Indicator species analysis (IndVal) showed that the distribution and abundance of intolerant chironomid taxa differed strongly among the studied rivers. Some of the intolerant taxa were restricted to unimpacted conditions, whereas others occurred mainly in impacted rivers. Thus, the indicator status of some genera (e.g. Eukiefferiella, Parametriocnemus, Stempellinella and Tvetenia) needs reassessment.  相似文献   

17.
18.
The current study presents the ostracod communities recovered from 26 shallow waterbodies in southern Kenya, combined with an ecological assessment of habitat characteristics. A total of 37 waterbodies were sampled in 2001 and 2003, ranging from small ephemeral pools to large permanent lakes along broad gradients in altitude (700–2 800 m) and salinity (37–67 200 µS cm?1). Between 0 and 12 species were recorded per site. Lack of ostracods was associated with either hypersaline waters, or the presence of fish in fresh waters. Three of the 32 recovered ostracod taxa, Physocypria sp., Sarscypridopsis cf. elizabethae and Oncocypris mulleri, combined a wide distribution with frequent local dominance. Canonical correspondence analysis on species–environment relationships indicated that littoral vegetation, altitude, surface water temperature and pH best explain the variation in ostracod communities. Presence of fish and water depth also influence species occurrence, with the larger species being more common in shallow waterbodies lacking fish. Based on Chao’s estimator of total regional species richness, this survey recovered about two-thirds (60–68%) of the regional ostracod species pool. Scanning electron micrographs (SEM) of the valve morphology of 14 ostracod taxa are provided, in order to facilitate their application in biodiversity and water-quality assessments and in palaeoenvironmental reconstruction.  相似文献   

19.
Paul Humphries 《Hydrobiologia》1996,321(3):219-233
Aquatic macrophytes are a common habitat for macroinvertebrates and may occupy depth zones in the littoral region of lowland rivers. Studies have indicated that different species of macrophyte typically support different assemblages, abundances and numbers of species of macroinvertebrates. This has often been attributed to differences in the dissectedness of stems and leaves of the macrophytes, resulting in differences in the surface area and/or the number of microhabitats available to invertebrates. I set out to measure the abundance and taxonomic richness and to describe the macroinvertebrate assemblages associated with three species of aquatic macrophyte in a pool in the Macquarie River, Tasmania and to examine responses of these variables to changes in water levels over summer. The macrophyte species sampled wereMyriophyllum simulans/variifolium, Triglochin procera} and Eleocharis sphacelata, each one differing in the dissectedness of its stems and leaves and its location in the littoral zone. Whereas the greatest abundance of macroinvertebrates was found associated in all months (i.e. at all water levels) with the structurally complex and shallowest macrophyte species, Myriophyllum, the number of taxa associated with this species was in several cases lower than for the structurally simpler and deeper water Triglochin and Eleocharis. While water depth and total plant biomass of samples were often correlated with invertebrate abundance and richness, these relationships were different for each macrophyte species. Of the nine most common invertebrate taxa collected from all samples, the abundances of more than half showed consistent differences among macrophyte species across months, two showed differences among macrophytes, but with an interaction with month and two showed no differences among macrophytes. There were major differences in the invertebrate assemblages associated with each macrophyte species in any one month, however, there was also a large turnover of taxa associated with the species of macrophytes from one month to the next. Changes in water level and concomitant changes in environmental variables are suggested as factors influencing the invertebrate fauna in the littoral zone of the pool of the Macquarie River. It is thus important for river managers to be aware that species of macroinvertebrates are not evenly distributed across species of macrophyte and that water levels and their influence on macrophytes as invertebrate habitat may play an integral part in determining the abundance, richness and assemblage of invertebrates in rivers.  相似文献   

20.
How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large‐scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two‐year whole‐stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community‐level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm‐adapted species (i.e., snails and predatory dipterans) relative to small‐bodied, cold‐adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community‐level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号