首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MEAM1 and MED species of the cryptic species complex Bemisia tabaci are important invasive pests that cause tremendous crop losses worldwide. A rapid and highly reliable molecular technique is necessary to identify these species because they are morphologically indistinguishable. Therefore, a multiple polymerase chain reaction coupled with a ligase detection reaction (PCR‐LDR) that was based on polymorphisms in the mitochondrial cytochrome oxidase I (mtCOI) gene of B. tabaci was developed to distinguish the two cryptic species. An assessment of the method indicated that PCR‐LDR provided high specificity and sensitivity in discriminating MEAM1 (SHB) and MED (SHQ) whiteflies. In field tests, PCR‐LDR genotyping was performed in one 96‐well plate to identify 93 individuals collected from 8 districts in the suburbs of Shanghai. Complete concordance was observed between PCR‐LDR and sequencing methods. The method was used to confirm that MEAM1 and MED were found in two districts, but only the MED was found in the other six districts. PCR‐LDR, which is a transplantable platform, provides an alternative method for species identification of B. tabaci at low cost.  相似文献   

2.
Abstract. Reciprocal‐crossing experiments were carried out and mitochondrial cytochrome oxidase I gene (mtCOI) sequences were compared for allopatric and sympatric Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations collected from Africa and India, and from the host‐plants cassava, sweet‐potato and a common weed, Euphorbia geniculata. Three incompatible mating groups were discovered, which involved the cassava B. tabaci colonies from Africa and India, the cassava and sweet‐potato B. tabaci populations from Uganda, and the cassava and E. geniculata B. tabaci from India. Successful reciprocal mating occurred between cassava‐specific B. tabaci from Uganda, Tanzania and Ghana, and between two Indian cassava B. tabaci populations. The parsimony and neighbour‐joining analyses of 699 bp mtCOI gene sequences divided the colonies primarily into those originating from Africa and India. Further subgrouping corresponded to host‐plant specialization. Cassava‐specific Ugandan, Tanzanian and Ghanaian colonies formed a single group and the sympatric sweet‐potato colony from Uganda grouped separately from them. The two geographically distant Indian cassava B. tabaci populations were similar and formed a single group, whereas the sympatric E. geniculata colony formed a sister clade. The clades generated by the phylogenetic analyses were maintained, with highly supported bootstrap values, when other published mtCOI gene sequences were included in the tree‐building process and the divisions matched those revealed by the reciprocal‐crossing experiments. These data suggest that biologically discrete populations exist within B. tabaci (sensu Russell, 1957 ).  相似文献   

3.
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East‐Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high‐level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high‐level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East‐Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil.  相似文献   

4.
The whitefly Bemisia tabaci is a pest of many agricultural and ornamental crops worldwide and particularly in Africa. It is a complex of cryptic species, which is extremely polyphagous with hundreds of host plants identified around the world. Previous surveys in western Africa indicated the presence of two biotypes of the invasive MED species (MED‐Q1 and MED‐Q3) living in sympatry with the African species SSA and ASL. This situation constitutes one of the rare cases of local coexistence of various genetic entities within the B. tabaci complex. In order to study the dynamics of the distribution and abundance of genetic entities within this community and to identify potential factors that could contribute to coexistence, we sampled B. tabaci populations in Burkina Faso in 2015 and 2016 on various plants, and also their parasitoids. All four genetic entities were still recorded, indicating no exclusion of local species by the MED species. While B. tabaci individuals were found on 55 plant species belonging to eighteen (18) families showing the high polyphagy of this pest, some species/biotypes exhibited higher specificity. Two parasitoid species (Eretmocerus mundus and Encarsia vandrieschei) were also recorded with Emundus being predominant in most localities and on most plants. Our data indicated that whitefly abundance, diversity, and rate of parasitism varied according to areas, plants, and years, but that parasitism rate was globally highly correlated with whitefly abundance suggesting density dependence. Our results also suggest dynamic variation in the local diversity of B. tabaci species/biotypes from 1 year to the other, specifically with MED‐Q1 and ASL species. This work provides relevant information on the nature of plant–B. tabaci‐parasitoid interactions in West Africa and identifies that coexistence might be stabilized by niche differentiation for some genetic entities. However, MED‐Q1 and ASL show extensive niche overlap, which could ultimately lead to competitive exclusion.  相似文献   

5.
Bemisia tabaci‐transmitted geminiviruses are one of the major threats on cassava and vegetable crops in Africa. However, to date, few studies are available on the diversity of B. tabaci and their associated endosymbionts in Africa. More than 28 species have been described in the complex of B. tabaci cryptic species; among them, 2 are invasive pests worldwide: MED and MEAM1. In order to assess the species diversity of B. tabaci in vegetable crops in Senegal, several samplings in different localities, hosts and seasons were collected and analyzed with nuclear (microsatellite) and mitochondrial (COI) markers. The bacterial endosymbiont community was also studied for each sample. Two species were detected: MED Q1 and MEAM1 B. Patterns of MED Q1 (dominance on most of the samples and sites, highest nuclear and mitochondrial diversity and broader secondary endosymbiont community: Hamiltonella, Cardinium, Wolbachia and Rickettsia), point toward a predominant resident begomovirus vector group for MED Q1 on market gardening crops. Furthermore, the lower prevalence of the second species MEAM1 B, its lower nuclear and mitochondrial diversity and a narrower secondary endosymbiont community (Hamiltonella/Rickettsia), indicate that this genetic group is exotic and results from a recent invasion in this area.  相似文献   

6.
The tobacco whitefly Bemisia tabaci (Gennadius) cryptic species complex and of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are extensively reported as destructive pests in vegetable crops worldwide. A survey was conducted in 2011 and 2012 to determine the occurrence and genetic diversity present in the populations of these whiteflies in the major vegetable production areas of Costa Rica. Insect samples were collected from sweet pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), common bean (Phaseolus vulgaris L.) and weeds present in commercial crops either in open field or greenhouse conditions. PCR‐RFLP analysis of mitochondrial cytochrome c oxidase subunit 1 gene (mtCOI) sequences of 621 whitefly individuals confirmed the presence of the Mediterranean (MED) type of the B. tabaci and of T. vaporariorum in most sampled regions. Also, individuals of the Middle East‐Asia Minor 1 (MEAM1) type of the B. tabaci were observed in low numbers. Contingency analyses based on type of crop, geographical region, whitefly species, year of collection and production system confirmed that T. vaporariorum was the most frequent species in vegetable production areas in Costa Rica, both in greenhouses and in open fields. B. tabaci MED is likely spreading to new areas of the country, whereas B. tabaci MEAM1 was mostly absent or rarely found. Comparisons of mtCOI sequences from B. tabaci individuals revealed the presence of four B. tabaci sequence haplotypes (named MED‐i, MED‐ii, MEAM1‐i, MEAM1‐xviii) in Costa Rica, three of them identical to B. tabaci haplotypes previously reported in the Western Hemisphere and other parts of the world. Analysis of sequences of T. vaporariorum individuals revealed a more complex population with the presence of 11 haplotypes, two of which were identical to T. vaporariorum sequences reported from other countries.  相似文献   

7.
Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), one of the most economically important agricultural pests worldwide, is the vector of cassava mosaic geminiviruses that cause cassava mosaic disease (CMD). In East and Central Africa, a severe CMD pandemic that spread from Uganda in the late 1980s still continues to devastate cassava crops. To assess the association of distinct B. tabaci genetic groups with the CMD pandemic, mitochondrial cytochrome oxidase I gene sequences were analysed from whiteflies collected during surveys conducted from 2010 to 2013 in Tanzania. Four genetic groups – Sub‐Saharan Africa 1 (SSA1), Mediterranean, Indian Ocean and East Africa 1, and a group of unknown whitefly species were identified. SSA1 comprised four subgroups: SSA1‐SG1, SSA1‐SG2, SSA1‐SG1/2 and SSA1‐SG3. SSA1‐SG1 was confined to the pandemic‐affected north‐western parts of Tanzania whilst SSA1‐SG2 and SSA1‐SG3 were found in the central and eastern parts not yet affected by the pandemic. The CMD pandemic front was estimated to lie in Geita Region, north‐western Tanzania, and to be spreading south‐east at a rate of ca 26 km/year. The pandemic‐associated B. tabaci SSA1‐SG1 predominated up to 180 km ahead of the CMD front indicating that changes in whitefly population characteristics precede changes in disease characteristics.  相似文献   

8.
Bemisia tabaci, a resistance‐prone insect pest, is a cryptic species complex with important invasive biotypes such as B and Q. The biotype and resistance statuses of this pest in Malaysia remain unclear. This study assessed the biotype and resistance status of a number of contemporary populations of B. tabaci based on the mtCO1 marker and the dose‐response method, respectively. The Pahang (PHG) population was labelled as the Q biotype, while the remainder of the populations belonged to the Asia 1 biotype. A very low level of resistance for profenofos, cypermethrin, and imidacloprid was detected for all populations [resistance factor (RF) < 10]. Resistance to diafenthiuron ranged from very low to very high (RF > 100). All populations showed a very low level of resistance against pymetrozine except Q‐type PHG population, which exhibited a very high level of resistance. For most insecticides, the highest level of resistance was detected in the PHG population. The implications of these findings for better management of this noxious pest are discussed.  相似文献   

9.
Cover Caption     
《Insect Science》2015,22(3):ii-ii
The whitefly vector of viruses Bemisia tabaci is one of the major threats on cassava and vegetable crops in Africa. More than 28 species have been described in the complex of B. tabaci cryptic species; among them, two are invasive pests worldwide (MEAM1 and MED), bearing a large and species specific endosymbiont community. To date, this is the first time that MEAM1and MED were described in Senegal together with their prevalence and associated endosymbiont community on vegetable crops (see pages 386–398). Photo by Antoine Franck, CIRAD, UMR PVBMT.  相似文献   

10.
Tomato chlorosis virus (ToCV), which is a newly emerged and rapidly spreading plant virus in China, has seriously reduced tomato production and quality over the past several years. In this study, the effect of ToCV on the demography of the whitefly, Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae), fed on infected and healthy tomato plants was evaluated using the age‐stage, two‐sex life table. When reared on ToCV‐infected tomato plants, the fecundity, length of oviposition period and female adult longevity of B. tabaci biotype Q decreased significantly, while the pre‐adult duration significantly increased compared to controls reared on healthy tomatoes. Consequently, the intrinsic rate of increase (r) and finite of increase (λ) of B. tabaci biotype Q on ToCV‐infected tomato plants significantly decreased compared to those on healthy tomatoes. Population projection predicted that a population of B. tabaci biotype Q fed on ToCV‐infected tomatoes increases slower than on healthy plants. These findings demonstrated that ToCV infection decreased the performance of B. tabaci biotype Q on tomato plants.  相似文献   

11.
B and Q are two putative species of the Bemisia tabaci complex (Hemiptera: Aleyrodidae), and are among the most invasive and destructive pests of crops and horticultural plants worldwide. In China, Q predominates and is displacing B. Although researchers have proposed that the higher capacity of Q to utilize host plants plays an important role in its replacement of B, there are few relevant field surveys and experimental studies. The difference in host assessment between B and Q in multiple‐choice rather than in no‐choice situations may be essential to understanding the displacement. Here, we compared settling and oviposition preferences, and adult and nymph performance, for the putative species B and Q of the B. tabaci complex on three common host species: poinsettia [Euphorbia pulcherrima Wild. ex Klotsch (Euphorbiaceae)], cotton [Gossypium hirsutum L. (Malvaceae)], and cabbage [Brassica oleracea L. (Brassicaceae)]. Although the preferred hosts for settling and oviposition were the same as those that supported maximum fitness (adult longevity, fecundity, and nymph survivorship), these hosts differed between B and Q. When given a choice, B preferred to settle and oviposit on cabbage over poinsettia and cotton, whereas Q preferred to settle and oviposit on poinsettia and cotton over cabbage. In a no‐choice experiment, adult longevity, fecundity, and nymphal survival for B were greater on cabbage than on poinsettia and cotton, but the opposite was true for Q.  相似文献   

12.
In the present study, genetic differentiation of Bemisia tabaci (Gennadius) biotype Q was analyzed based on mitochondrial cytochrome oxidase I (mt COI) gene sequence. The results showed that B. tabaci biotype Q could be separated into two subclades, which were labeled as subclades Q1 and Q2. Subclade Q1 was probably indigenous to the regions around the Mediterranean area and subclade Q2 to Israel or Cyprus. It was because B. tabaci was composed of several genetically distinct groups with a strong geographical association between more closely related biotypes. Not all of the B. tabaci biotype Q in the non‐Mediterranean countries come from the same regions. Until now, all B. tabaci biotype Q in China were grouped into subclade Q1. The B. tabaci biotype Q introduced into the US included both subclades Q1 and Q2. The genetic structure analysis showed higher genetic variation of subclade Q1 than that of subclade Q2.  相似文献   

13.
The whitefly Bemisia tabaci is a cryptic species complex of at least 24 genetically distinct species. Thus far, one obligate and seven facultative symbiotic bacteria have been reported from the B. tabaci species complex. Both genetic groups and infected symbionts are extremely important to estimate the pest status of B. tabaci. In this study, we collected 340 whiteflies from 39 agricultural sites, covering an entire region of the B. tabaci habitat in Japan, and examined the genotypes and symbiont community composition at subspecies level. Use of the cleaved amplified polymorphic sequence technique and mitochondrial cytochrome oxidase subunit I gene sequencing detected five genetic groups: indigenous species JpL and Asia II 6, invasive species Middle East‐Asia Minor 1 (MEAM1) and Mediterranean Subclade Q1 (MED Q1), and a genetic group previously undetected in Asia, Mediterranean Subclade Q2 (MED Q2). The genetic groups exhibited characteristic infection statuses with regard to their facultative symbionts, as observed in other countries. The endosymbiotic microbiota of the Japanese MED Q1 was different from that in neighbouring countries, but similar to that in the French or Uruguayan MED Q1. These results may indicate that Japanese MED Q1 species have not invaded from neighbouring countries, but from distant countries by international transportation. All Japanese MED Q2 species were infected with Rickettsia, some of which are regarded as conferring a female‐biased sex ratio and fitness benefit on B. tabaci. The results suggest that MED Q2 may be prevalent in Japan and neighbouring countries.  相似文献   

14.
Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) is the vector of cassava mosaic geminiviruses (CMGs), which are the main production constraint to cassava [Manihot esculenta Crantz (Euphorbiaceae)], both in Uganda and elsewhere in Africa. Two B. tabaci genotype clusters, Ug1 and Ug2, differentiated at 8% nucleotide (nt) divergence within the mitochondrial cytochrome oxidase I (mtCOI) gene, have been shown to occur on cassava in Uganda. However, the role of alternative hosts in the ecology of cassava B. tabaci genotypes and their possible involvement in the epidemiology of cassava mosaic disease (CMD) in Uganda remain unknown. In this study, we investigated the restriction of cassava B. tabaci genotypes to cassava and the colonization of alternative host species in select cassava‐growing areas of the country in 2003 and 2004. Bemisia tabaci adults and 4th instar nymphs were collected from cassava and 11 other cultivated and uncultivated species occurring adjacent to the sampled cassava fields. Phylogenetic analysis of mtCOI sequences revealed that only a single genotype cluster, Ug1, was present on both cassava and non‐cassava plant species sampled in this study. The Ug1 genotypes (n = 49) shared 97–99% nt identity with the previously described cassava‐associated B. tabaci populations in southern Africa, and were ~8% and ~13% divergent from Ug2 and the ‘Ivory Coast cassava’ genotypes in Uganda and Ivory Coast, respectively. The Ug1 genotypes occurred (as adults) on all 12 source‐plant species sampled. However, based on the presence of B. tabaci 4th instar nymphs, the Ug1 genotypes (n = 13) colonized cassava and five other non‐cassava plant species: Manihot glaziovii, Jatropha gossypifolia, Euphorbia heterophylla, Aspilia africana, and Abelmoschus esculentus, suggesting that cassava B. tabaci (Ug1 genotypes) are not restricted to cassava in Uganda. No Ug2‐like genotypes were detected on any of the plant species sampled, including cassava, in this study. The identification of additional hosts for at least one genotype cluster, Ug1, known also to colonize cassava, and which was hitherto thought to be ‘cassava‐restricted’ may have important epidemiological significance for the spread of CMGs in Uganda.  相似文献   

15.
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), with its global distribution and extensive genetic diversity, is now known to be a complex of over 35 cryptic species. However, a satisfactory resolution of the systematics of this species complex is yet to be achieved. Here, we designed experiments to examine reproductive compatibility among species with different levels of mitochondrial cytochrome oxidase I (mtCOI) divergence. The data show that putative species with mtCOI divergence of >8% between them consistently exhibited complete reproductive isolation. However, two of the putative species, Asia II 9 and Asia II 3, with mtCOI divergence of 4.47% between them, exhibited near complete reproductive compatibility in one direction of their cross, and partial reproductive compatibility in the other direction. Together with some recent reports on this topic from the literature, our data indicates that, while divergence in the mtCOI sequences provides a valid molecular marker for species delimitation in most clades, more genetic markers and more sophisticated molecular phylogeny will be required to achieve adequate delimitation of all species in this whitefly complex. While many attempts have been made to examine the reproductive compatibility among genetic groups of the B. tabaci complex, our study represents the first effort to conduct crossing experiments with putative species that were chosen with considerations of their genetic divergence. In light of the new data, we discuss the best strategy and protocols to conduct further molecular phylogenetic analysis and crossing trials, in order to reveal the overall pattern of reproductive incompatibility among species of this whitefly complex.  相似文献   

16.
The genetic variability of whitefly (Bemisia tabaci) species, the vectors of cassava mosaic begomoviruses (CMBs) in cassava growing areas of Kenya, Tanzania, and Uganda, was investigated through comparison of partial sequences of the mitochondria cytochrome oxidase I (mtCOI) DNA in 2010/11. Two distinct species were obtained including sub‐Saharan Africa 1 (SSA1), comprising of two sub‐clades (I and II), and a South West Indian Ocean Islands (SWIO) species. Among the SSA1, sub‐clade I sequences shared a similarity of 97.8–99.7% with the published Uganda 1 genotypes, and diverged by 0.3–2.2%. A pairwise comparison of SSA1 sub‐clade II sequences revealed a similarity of 97.2–99.5% with reference southern Africa genotypes, and diverged by 0.5–2.8%. The SSA1 sub‐clade I whiteflies were widely distributed in East Africa (EA). In comparison, the SSA1 sub‐clade II whiteflies were detected for the first time in the EA region, and occurred predominantly in the coast regions of Kenya, southern and coast Tanzania. They occurred in low abundance in the Lake Victoria Basin of Tanzania and were widespread in all four regions in Uganda. The SWIO species had a sequence similarity of 97.2–97.7% with the published Reunion sequence and diverged by 2.3–2.8%. The SWIO whiteflies occurred in coast Kenya only. The sub‐Saharan Africa 2 whitefly species (Ug2) that was associated with the severe CMD pandemic in Uganda was not detected in our study.  相似文献   

17.
Wolbachia is the most prevalent symbiont described in arthropods to date. Wolbachia can manipulate host reproduction, provide nutrition to insect hosts and protect insect hosts from pathogenic viruses. So far, 13 supergroups of Wolbachia have been identified. The whitefly Bemisia tabaci is a complex containing more than 28 morphologically indistinguishable cryptic species. Some cryptic species of this complex are invasive. In this study, we report a comprehensive survey of Wolbachia in B. tabaci and its relative B. afer from 1658 insects representing 54 populations across 13 provinces of China and one state of Australia. Based on the results of PCR or sequencing of the 16S rRNA gene, the overall rates of Wolbachia infection were 79.6% and 0.96% in the indigenous and invasive Bemisia whiteflies, respectively. We detected a new Wolbachia supergroup by sequencing five molecular marker genes including 16S rRNA, groEL, gltA, hcpA, and fbpA genes. Data showed that many protein‐coding genes have limitations in detecting and classifying newly identified Wolbachia supergroups and thus raise a challenge to the known Wolbachia MLST standard analysis system. Besides, the other Wolbachia strains detected from whiteflies were clustered into supergroup B. Phylogenetic trees of whitefly mitochondrial cytochrome oxidase subunit I and Wolbachia multiple sequencing typing genes were not congruent. In addition, Wolbachia was also detected outside the special bacteriocytes in two cryptic species by fluorescence in situ hybridization, indicating the horizontal transmission of Wolbachia. Our results indicate that members of Wolbachia are far from well explored.  相似文献   

18.
Bemisia tabaci, an invasive pest that causes crop damage worldwide, is a highly differentiated species complex, divided into biotypes that have mainly been defined based on mitochondrial DNA sequences. Although endosymbionts can potentially induce population differentiation, specialization and indirect selection on mtDNA, studies have largely ignored these influential passengers in B. tabaci, despite as many as seven bacterial endosymbionts have been identified. Here, we investigate the composition of the whole bacterial community in worldwide populations of B. tabaci, together with host genetic differentiation, focusing on the invasive B and Q biotypes. Among 653 individuals studied, more than 95% of them harbour at least one secondary endosymbiont, and multiple infections are very common. In addition, sequence analyses reveal a very high diversity of facultative endosymbionts in B. tabaci, with some bacterial genus being represented by more than one strain. In the B and Q biotypes, nine different strains of bacteria have been identified. The mtDNA‐based phylogeny of B. tabaci also reveals a very high nucleotide diversity that partitions the two ITS clades (B and Q) into six CO1 genetic groups. Each genetic group is in linkage disequilibrium with a specific combination of endosymbionts. All together, our results demonstrate the rapid dynamics of the bacterial endosymbiont–host associations at a small evolutionary scale, questioning the role of endosymbiotic communities in the evolution of the Bemisia tabaci species complex and strengthening the need to develop a metacommunity theory of inherited endosymbionts.  相似文献   

19.
Abstract Recent phylogenetic analysis using mitochondrial cytochrome oxidase I (mtCOI) sequences of Bemisia tabaci worldwide indicates that the whitefly comprises at least 24 morphologically indistinguishable but genetically distinct cryptic species. While evidence of reproductive isolation has been reported for some of the putative species, more extensive crossing experiments are required to clarify the systematics of this species complex. In this study, we established laboratory cultures for six putative species of B. tabaci collected in China. We conducted 22 inter‐species crosses among the six putative species. The data and those reported previously were collated, and the combined dataset covered all the 30 possible inter‐species crosses among the six putative species. Intra‐species controls always produced female and male progeny and the proportions of females in the first generation (F1) ranged from 56% to 70%. However, in inter‐species crosses female progeny were rarely produced, and the few F1 females produced in four of the 30 inter‐species crosses were either sterile or significantly weaker in viability. These results demonstrate a pattern of complete reproductive isolation among the six putative species and show that they are six cryptic species in the B. tabaci complex.  相似文献   

20.
Anthracnose caused by Colletotrichum (CAD) is an economically important disease of cassava; however, research on its species diversity and geographical distribution of Colletotrichum in China remains limited. In this study, we investigated the phylogenetic diversity of Colletotrichum isolates associated with symptomatic leaf tissues of cassava from Guangxi and Yunnan provinces in China and aimed to confirm their identification using advanced techniques. Based on multi‐locus phylogenetic analyses and phenotypic characteristics, we identified four species from the isolates, comprising C. plurivorum, C. karstii, C. fructicola and C. siamense, and we found variation in degrees of virulence among the species and between cassava varieties. Our results are the first to report these species from cassava, and they provide a basis for the development of management strategies for CAD in cassava.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号