首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hydrolytic (0.6–3.5 g COD g?1 VSS d?1) and methanogenic (0.01–0.84 g COD g?1 VSS d?1) activities depended on the type of biomass, whereas no significant differences were observed among the acidogenic activities (1.5–2.2 g COD g?1 VSS d?1). In most cases, the higher the hydrolytic and the methanogenic activity, the higher the Bacteroidetes and Archaea percentages, respectively, in the biomasses. Hydrogenotrophic methanogenic activity was always higher than acetoclastic methanogenic activity, and the highest values were achieved in those biomasses with lower percentages of Methanosaeta. In sum, the combination of molecular tools with activity tests seems to be essential for a better characterization of anaerobic biomasses.  相似文献   

2.
Journal of Industrial Microbiology & Biotechnology - Microbial electrochemical technology (MET) that can harvest electricity/valuable materials and enhance the efficiency of conventional...  相似文献   

3.
Chinese silver grass (CSG), a potential subtropical energy crop, was investigated as a co-substrate to enhance the anaerobic digestion of food waste for municipal solid waste treatment. Results showed that 88.1% of food wastes were degraded using CSG as a co-substrate with 45 days of digestion, where the food waste, CSG, and sludge on VS/TS/working volume was 93.14 g/111.55 g/1 L, in which the average biogas production was at 429.3 L/kg solids, and the average methane content was around 60%. During the digestion, the concentrations of ammonium and free ammonia gradually increased to 1448.2 and 265.2 mg/L respectively, without any significant inhibitory effects on biogas production, which is probably due to the buffering effects of CSG. Microbial community analysis showed that microorganisms from the class of Firmicutes and Bacteroidetes were dominant during digestion, and that the microbial community diversity increased with active methanogenesis, suggesting that the addition of substrates contribute to the increase of microbial diversity, and could be beneficial for biogas production. Therefore, using CSG as a co-substrate in the single-stage food waste anaerobic digestion system is a potential simple method to convert CSG into renewable energy and to simultaneously improve food waste treatment.  相似文献   

4.
5.
Hydrogen production by the dark fermentation of food wastes is an economic and environmentally friendly technology to produce the clean energy source as well as to treat the problematic wastes. However, the long-term operations of the continuous anaerobic reactor for fermentative hydrogen production were frequently unstable. In this study, the structure of microbial community within the anaerobic reactor during unstable hydrogen production was examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) techniques. The changes in microbial community from H(2)-producing Clostridium spp. to lactic acid-producing Lactobacillus spp. were well coincident with the unexpected process failures and the changes of metabolites concentrations in the effluent of the anaerobic reactor. As the rate of hydrogen production decreased, effluent lactic acid concentration increased. Low rate of hydrogen production and changes in microbial community were related to the 'kimchi' content and storage temperature of food waste feed solution. After low temperature control of the storage tank of the feed solution, any significant change in microbial community within the anaerobic reactor did not occur and the hydrogen production was very stably maintained for a long time.  相似文献   

6.
7.
The performance and dynamics of the bacterial communities in the biofilm and suspended culture in the anode chamber of sucrose-fed microbial fuel cells (MFCs) were studied by using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes followed by species identification by sequencing. The power density of MFCs was correlated to the relative proportions of species obtained from DGGE analysis in order to detect bacterial species or taxonomic classes with important functional role in electricity production. Although replicate MFCs showed similarity in performance, cluster analysis of DGGE profiles revealed differences in the evolution of bacterial communities between replicate MFCs. No correlation was found between the proportion trends of specific species and the enhancement of power output. However, in all MFCs, putative exoelectrogenic denitrifiers and sulphate-reducers accounted for approximately 24% of the bacterial biofilm community at the end of the study. Pareto–Lorenz evenness distribution curves extracted from the DGGE patterns obtained from time course samples indicated community structures where shifts between functionally similar species occur, as observed within the predominant fermentative bacteria. These results suggest the presence of functional redundancy within the anodic communities, a probable indication that stable MFC performance can be maintained in changing environmental conditions. The capability of bacteria to adapt to electricity generation might be present among a wide range of bacteria.  相似文献   

8.
To investigate the effect of hydraulic retention time (HRT) and temperature (T) on bacterial community structure and volatile fatty acids (VFAs) production of an acidogenic process, and VFA production and changes in the bacterial community in three identical automated anaerobic continuously-stirred tank reactors were analyzed using response surface analysis (RSA) and nonmetric multidimensional scaling (NMDS). For RSA, 11 trials were conducted to find the combination of T and HRT under which VFA production was greatest; VFA production was affected more by HRT than by T. To identify the bacterial community structure in each trial, DNA from each experimental point of the RSA was analyzed using denaturating gradient gel electrophoresis (DGGE), and eight bacteria species were detected. NMDS was conducted on band intensities obtained using DGGE, and bacterial community structure was affected more by T than by HRT. Taken together, these results suggest that VFA production during acidogenesis was more dependent on the physicochemical properties of acidogens, such as their specific growth rate or contact time with of substrates, than on changes in the microbial community.  相似文献   

9.
Efficient operation and stability of biogas plants requires continuous monitoring of the digester content. Traditional laboratory analysis of digester sludge is often complex and time‐consuming and shows a delayed response to disruptions within the fermentation process. As a new approach, we applied an online measurement technique (laser absorption spectroscopy) for real‐time monitoring of stable carbon isotopes of methane () in a pilot‐scale biogas digester (3500 L) regularly fed with maize silage. Generally, isotopic composition of methane gives information about specific substrate degradation, that is, methanogenic pathways that reflect the actual digester state. First results of a 2‐wk monitoring experiment show that stable carbon isotopes of methane respond promptly and highly dynamic to changes in the process state of the digester. In combination with other monitoring parameters (methane production rate, concentration of volatile fatty acids, and pH) the fluctuations in can be interpreted as a change in methanogenic pathways due to a high organic loading rate. In this context, might be used as a new parameter tool for monitoring and characterization of the process state of the digester.  相似文献   

10.
A successful start-up enables acceleration of anaerobic digestion (AD) into steady state. The microbial community influences the AD performance during the start-up. To investigate how microbial communities changed during the start-up, microbial dynamics was analyzed via high-throughput sequencing in this study. The results confirmed that the AD was started up within 25 d. Thermophilic methanogens and bacterial members functioning in hydrolysis, acidogenesis, and syntrophic oxidation became predominant during the start-up stage, reflecting a quick adaption of microorganisms to operating conditions. Such predominance also indicated the great contribution of these members to the fast start-up of AD. Redundancy analysis confirmed that the bacterial abundance significantly correlated with AD conditions. The stable ratio of hydrogenotrophic methanogens to aceticlastic methanogens is also important to maintain the stability of the AD process. This work will be helpful to understand the contribution of microbial community to the start-up of AD.  相似文献   

11.
Two different MFC configurations designed for handling solid wastes as a feedstock were evaluated in batch mode: a single compartment combined membrane-electrodes (SCME) design; and a twin-compartment brush-type anode electrodes (TBE) design (reversed T-shape MFC with two-air cathode) without a proton exchange membrane (PEM). Cattle manure was tested as a model livestock organic solid waste feedstock. Under steady conditions, voltage of 0.38 V was recorded with an external resistance of 470 Ω. When digested anaerobic sludge was used as the seed in the SCME design, a maximum power density of 36.6 mW/m2 was recorded. When hydrogen-generating bacteria (HGB) were used as the seed used in the TBE design, a higher power density of 67 mW/m2 was recorded.  相似文献   

12.
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.  相似文献   

13.
Journal of Industrial Microbiology & Biotechnology - Municipal solid waste (MSW) landfills are the third largest anthropogenic source of methane (CH4) emissions in the United States. The...  相似文献   

14.
Effects of operating lab-scale nitrifying membrane bioreactors (MBR) at short solids retention times (SRT = 3, 5 and 10d) were presented with focus on reactor performance and microbial community composition. The process was capable of achieving over 87% removal of ammonia and 95% removal of chemical oxygen demand (COD), almost regardless of SRT. The denaturing gradient gel electrophoresis (DGGE) analysis shown that bacterial communities evolved in time in a similar way at different SRT. The results of clone library analysis indicated that Betaproteobacteria was the dominant bacterial group in all the reactors but there were significant difference of species for different SRT with higher species diversity at longer SRT. Ammonia and COD removal efficiencies were not correlated with the number of bacterial species or their diversity.  相似文献   

15.
16.
【目的】研究煤中矿物质黄铁矿对生物产气的影响。【方法】本研究以陕西榆林煤作为生物产气底物,以实验室前期驯化的产甲烷微生物作为出发菌群,通过在厌氧体系中添加不同质量的黄铁矿进行煤生物模拟产气试验。利用气相色谱仪、液相色谱仪、酶标仪、傅里叶红外光谱仪和Illumina高通量测序平台研究产气过程中CH4含量、总挥发性脂肪酸(volatile fatty acids,VFAs)浓度、辅酶F420含量、产气前后煤中有机官能团和微生物群落结构的变化。【结果】添加适量黄铁矿在产气前期(15–22 d)能促进CH4生成,而产气后期(29–50 d)会抑制产气,而且添加0.5%黄铁矿的在前中期的产气量比对照组高48.1%,累计产气量达到193.67 μmol/g-coal。生物产气实验组反应液中的VFAs和辅酶F420浓度整体均高于对照组,说明添加黄铁矿促进了反应体系中产酸细菌和产甲烷菌的活性。添加黄铁矿后煤中的醇和酚羟基,–NH–和–NH2更易被微生物利用。黄铁矿添加对细菌和古菌的群落多样性有...  相似文献   

17.
The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d?1 and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d?1, respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.  相似文献   

18.
19.
Anaerobic co-digestion of food waste and biosolids was carried out in sequential batch and single-stage batch systems in four treatments. Methane yield, which was used as a functional process parameter, differed between treatments, with the single-stage batch system generating lower volumes than the sequential batch systems. Volatile fatty acid (VFA) concentrations and pH in the leachate also differed between treatments. VFA concentrations were highest and methane generation yields lowest in the single-stage batch system in comparison to the sequential batch systems. The anaerobic microbial community structure of the domains Archaea and Bacteria, determined by denaturing gradient gel electrophoresis, differed between treatments and was correlated to a number of environmental parameters such as pH, VFA concentration and methane generation rate. Methane generation rate was significantly correlated to the community structure of Bacteria but not Archaea. This indicated that the substrates that are produced by acetogens (Bacteria) are important for the growth and community structure of the methanogens (Archaea). Community structure of Archaea changed over time, but this had no observable effect on functional ability based on methane yields. Microbial diversity (H′) was shown to be not important in developing a functionally successful anaerobic microbial community.  相似文献   

20.
AIMS: The purpose of this study was to investigate the influence of co-substrates, such as glucose and cysteine, on the structure of microbial aggregates in anaerobic digesters treating oleate, a long-chain fatty acid (LCFA). METHODS AND RESULTS: Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) were used to examine the structure of microbial aggregates. Fluorescence in situ hybridization (FISH) techniques were also used to characterize and localize the different trophic groups present in the aggregates. Oleate was found to inhibit the methanogenic activity and formation of granular biomass in digesters. The addition of co-substrates, such as glucose and cysteine either singly or in combination, increased the methanogenic activity and formation of granular biomass. Glucose was more effective than cysteine in reducing the inhibition by oleate on the methanogenic bacteria and in enhancing the formation of granules. CONCLUSIONS: The addition of nutrient substrate, such as glucose and cysteine could decrease the toxicity of LCFA on anaerobic granulation. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the addition of other substrates might decrease the toxicity of LCFA on the granulation of biomass in anaerobic digesters and enhance methanogenic activity. A combination of TEM, CLSM and FISH techniques provides a better tool for visualizing microbial aggregates and for differentiating and localizing different microbial groups within these aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号