首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parental care increases parental fitness through improved offspring condition and survival but comes at a cost for the caretaker(s). To increase life‐time fitness, caring parents are, therefore, expected to adjust their reproductive investment to current environmental conditions and parental capacities. The latter is thought to be signaled via ornamental traits of the bearer. We here investigated whether pre‐ and/or posthatching investment of blue tit (Cyanistes caeruleus) parents was related to ornamental plumage traits (UV crown coloration and carotenoid‐based plumage coloration) expressed by either the individual itself (i.e. “good parent hypothesis”) or its partner (i.e. “differential allocation hypothesis”). Our results show that neither prehatching (that is clutch size and offspring begging intensity) nor posthatching parental investment (provisioning rate, offspring body condition at fledging) was related to an individual's UV crown coloration or to that of its partner. Similar observations were made for carotenoid‐based plumage coloration, except for a consistent positive relationship between offspring begging intensity and maternal carotenoid‐based plumage coloration. This sex‐specific pattern likely reflects a maternal effect mediated via maternally derived egg substances, given that the relationship persisted when offspring were cross‐fostered. This suggests that females adjust their offspring's phenotype toward own phenotype, which may facilitate in particular mother‐offspring co‐adaptation. Overall, our results contribute to the current state of evidence that structural or pigment‐based plumage coloration of blue tits are inconsistently correlated with central life‐history traits.  相似文献   

2.
Offspring are selected to demand more resources than what is optimal for their parents to provide, which results in a complex and dynamic interplay during parental care. Parent–offspring communication often involves conspicuous begging by the offspring which triggers a parental response, typically the transfer of food. So begging and parental provisioning reciprocally influence each other and are therefore expected to coevolve. There is indeed empirical evidence for covariation of offspring begging and parental provisioning at the phenotypic level. However, whether this reflects genetic correlations of mean levels of behaviors or a covariation of the slopes of offspring demand and parental supply functions (= behavioral plasticity) is not known. The latter has gone rather unnoticed—despite the obvious dynamics of parent–offspring communication. In this study, we measured parental provisioning and begging behavior at two different hunger levels using canaries (Serinus canaria) as a model species. This enabled us to simultaneously study the plastic responses of the parents and the offspring to changes in offspring need. We first tested whether parent and offspring behaviors covary phenotypically. Then, using a covariance partitioning approach, we estimated whether the covariance predominantly occurred at a between‐nest level (i.e., indicating a fixed strategy) or at a within‐nest level (i.e., reflecting a flexible strategy). We found positive phenotypic covariation of offspring begging and parental provisioning, confirming previous evidence. Yet, this phenotypic covariation was mainly driven by a covariance at the within‐nest level. That is parental and offspring behaviors covary because of a plastic behavioral coadjustment, indicating that behavioral plasticity could be a main driver of parent–offspring coadaptation.  相似文献   

3.
Parental care involves elaborate behavioural interactions between parents and their offspring, with offspring stimulating their parents via begging to provision resources. Thus, begging has direct fitness benefits as it enhances offspring growth and survival. It is nevertheless subject to a complex evolutionary trajectory, because begging may serve as a means for the offspring to manipulate parents in the context of evolutionary conflicts of interest. Furthermore, it has been hypothesized that begging is coadapted and potentially genetically correlated with parental care traits as a result of social selection. Further experiments on the causal processes that shape the evolution of begging are therefore essential. We applied bidirectional artificial selection on begging behaviour, using canaries (Serinus canaria) as a model species. We measured the response to selection, the consequences for offspring development, changes in parental care traits, here the rate of parental provisioning, as well as the effects on reproductive success. After three generations of selection, offspring differed in begging behaviour according to our artificial selection regime: nestlings of the high begging line begged significantly more than nestlings of the low begging line. Intriguingly, begging less benefitted the nestlings, as reflected by on average significantly higher growth rates, and increased reproductive success in terms of a higher number of fledglings in the low selected line. Begging could thus represent an exaggerated trait, possibly because parent–offspring conflict enhanced the selection on begging. We did not find evidence that we co‐selected on parental provisioning, which may be due to the lack of power, but may also suggest that the evolution of begging is probably not constrained by a genetic correlation between parental provisioning and offspring begging.  相似文献   

4.
Parent and offspring behaviors are expected to act as both the agents and targets of selection. This may generate parent–offspring coadaptation in which parent and offspring behaviors become genetically correlated in a way that increases inclusive fitness. Cross‐fostering has been used to study parent–offspring coadaptation, with the prediction that offspring raised by non‐relatives, or parents raising non‐relatives, should suffer fitness costs. Using long‐term data from more than 400 partially crossed broods of blue tits (Cyanistes caeruleus), we show that there is no difference in mass or survival between crossed and non‐crossed chicks. However, previous studies for which the evidence for parent–offspring coadaptation is strongest compare chicks from fully crossed broods with those from non‐crossed broods. When parent–offspring coadaptation acts at the level of the brood then partial cross‐fostering experiments are not expected to show evidence of coadaptation. To test this, we performed an additional experiment (163 broods) in which clutches were either fully crossed, non‐crossed, or partially crossed. In agreement with the long‐term data, there was no evidence for parent–offspring coadaptation on offspring fitness despite high power. In addition there was no evidence of effects on parental fitness, nor evidence of sibling coadaptation, although the power of these tests was more modest.  相似文献   

5.
The coevolution of parental investment and offspring solicitation is driven by partly different evolutionary interests of genes expressed in parents and their offspring. In species with biparental care, the outcome of this conflict may be influenced by the sexual conflict over parental investment. Models for the resolution of such family conflicts have made so far untested assumptions about genetic variation and covariation in the parental resource provisioning response and the level of offspring solicitation. Using a combination of cross-fostering and begging playback experiments, we show that, in the great tit (Parus major), (i) the begging call intensity of nestlings depends on their common origin, suggesting genetic variation for this begging display, (ii) only mothers respond to begging calls by increased food provisioning, and (iii) the size of the parental response is positively related to the begging call intensity of nestlings in the maternal but not paternal line. This study indicates that genetic covariation, its differential expression in the maternal and paternal lines and/or early environmental and parental effects need to be taken into account when predicting the phenotypic outcome of the conflict over investment between genes expressed in each parent and the offspring.  相似文献   

6.
The most critical assumption of communication models regarding parent–offspring conflict is that food solicitation displays of genetic offspring are honest signals to elicit beneficial parental care. A critical requirement of honesty is the reliable change of perceivable aspects of begging calls with physiological needs. We experimentally tested whether and how the acoustic structure and begging call rate of individual Grey Warbler Gerygone igata nestlings change with hunger level and age. We also examined a rarely documented component of chick begging calls, namely the temporal dynamics of acoustic modulation after nestlings heard parental feeding calls. Begging call structure narrowed in frequency range and, surprisingly, decreased in amplitude as chick hunger levels increased. We also found that begging calls changed with chick age, with the frequency increasing and the duration decreasing for older chicks. These results indicate that the acoustic properties of nestling Grey Warbler begging calls are complex and may be used to signal several aspects of nestling traits, including hunger level and age (or size, a correlate of age). Overall, begging calls of Grey Warbler chicks appear to be honest, implying that parents are likely to benefit from relying on the acoustic features of their progeny’s calls which predict chick need. Our results have important implications regarding the reliability and information content of nestling solicitation signals for the brood parasite shining cuckoo Chrysococcyx lucidus exploiting Grey Warbler parental care, in that these begging‐call mimetic specialist cuckoos might also need to match closely the dynamics of acoustic features of their host chicks’ calls.  相似文献   

7.
Recent studies on birds have shown that offspring begging and parental provisioning covary at the phenotypic level, which is thought to reflect genetic correlations. However, prenatal maternal factors, like yolk testosterone, may also facilitate parent-offspring coadaptation via their effects on offspring begging and development. In fact, maternal effects are thought to adjust offspring phenotype to the environmental conditions they will experience after birth, which are in turn strongly dependent on the levels of parental provisioning. Using cross-fostering experiments in canaries, we tested the role of maternal effects on parent-offspring coadaptation from two different approaches. First, we analyzed whether females deposit yolk testosterone in relation to their own or their partner's prospective parental provisioning, measured as the rate of parental feeding to foster nestlings. Second, we investigated whether females deposit yolk testosterone in relation to costs they incurred when raising a previous brood, as this likely impinges on their capacity to provide parental care in the near future. However, from the results of both experiments we have no evidence that canary females deposit yolk testosterone in order to match offspring begging to the levels of care they and/or their partners provide. We therefore found no evidence that yolk testosterone facilitates parent-offspring coadaptation. In addition, our results suggest that the functional consequences of yolk testosterone deposition may relate to hatching asynchrony since it primarily varied with egg laying order.  相似文献   

8.
The evolution of parent-offspring interactions for the provisioning of care is usually explained as the phenotypic outcome of resolved conflicting selection pressures. However, parental care and offspring solicitation are expected to have complex patterns of inheritance. Here we present a quantitative genetic model of parent-offspring interactions that allows us to investigate the evolutionary maintenance of a state of resolved conflict. We show that offspring solicitation and parental provisioning are expected to become genetically correlated through coadaptation and that their genetic architecture is dictated by an interaction between patterns of selection and the proximate mechanisms regulating supply and demand. When selection is predominately on offspring solicitation, our model suggests that the genetic correlations between provisioning and solicitation are usually positive if provisioning reduces solicitation. Conversely, when selection is predominately on parental provisioning, the correlations are mostly negative as long as parents show a positive response to offspring demand. Empirical estimates of the genetic architecture of traits involved in family interactions fit these predictions. Our model demonstrates how the evolutionary maintenance of parent-offspring interactions can result in variable patterns of coadaptation, and it provides an explanation for the diversity of family interactions within and among species.  相似文献   

9.
Parental effort has a direct impact on individual fitness. Theoretical models exploring how parental effort evolves to cope with offspring demand and sexual conflicts may differ in the assumptions they make in respect to the genetic heritability of parental behaviours. Only a few attempts, however, have been made to estimate the heritability of parental behaviours and their possible co‐evolution with offspring solicitation behaviour. Analysing parent and offspring behaviours in four generations of cross‐fostered broods of house sparrows, we found that parental effort (food delivery rate) was repeatable across consecutive broods and heritable across generations. In contrast, parental response to experimentally induced changes in nestling begging was neither repeatable across broods nor heritable across generations or correlated to nestling begging. Thus, the results give no indication for genetic covariance between begging intensity and parental response, but provide the first cross‐fostering‐based evidence for the heritability of parental investment levels across generations.  相似文献   

10.
Intrafamilial conflict and parental investment: a synthesis   总被引:12,自引:0,他引:12  
We outline and develop current theory on how inherent genetic conflicts of interest between the various family members can affect the flow of parental investment from parents to offspring, and discuss the problems for empirical testing that this generates. The parental investment pattern realized in nature reflects the simultaneous resolution of all the conflicts between the family players. This depends on the genetic mechanism, the mating system and reproductive constraints, on whether extra demand by progeny affects current or future sibs, and particularly on the behavioural mechanisms underlying demand (begging or solicitation) and supply (provision of parental investment by parents). The direction of deviation from the optimal parental investment for the parent(s) depends on the slope of what we term the 'effect of supply on demand', the mechanism that determines how changes in food supply affect begging levels. If increasing food increases begging (positive slope), less parental investment is supplied than the parental optimum and if increasing food decreases begging (negative slope), more parental investment is supplied. The magnitude of deviation depends on both the 'effect of supply on demand' and on the 'effect of demand on supply' (the mechanism determining how changes in begging affect food supply, which always has a positive slope). We conclude that it will often be impossible to deduce the extent of underlying conflict by establishing the amount of parental investment given relative to the ideal optimum for the parent. Some possible directions for future research are discussed.  相似文献   

11.
12.
Life history theory predicts that natural selection favours parents who balance investment across offspring to maximize fitness. Theoretical studies have shown that the optimal level of parental investment from the offspring's perspective exceeds that of its parents, and the disparity between the two generates evolutionary conflict for the allocation of parental investment. In various species, the offspring hatch asynchronously. The age hierarchy of the offspring usually establishes competitive asymmetries within the brood and determines the allocation of parental investment among offspring. However, it is not clear whether the allocation of parental investment determined by hatching pattern is optimal for parent or offspring. Here, we manipulated the hatching pattern of the burying beetle Nicrophorus quadripunctatus to demonstrate the influence of hatching pattern on the allocation of parental investment. We found that the total weight of a brood was largest in the group that mimicked the natural hatching pattern, with the offspring skewed towards early hatchers. This increases parental fitness. However, hatching patterns with more later hatchers had heavier individual offspring weights, which increases offspring fitness, but this hatching pattern is not observed in the wild. Thus, our study suggests that the natural hatching pattern optimizes parental fitness, rather than offspring fitness.  相似文献   

13.
Parental food allocation in birds has long been a focal point for life history and parent–offspring conflict theories. In asynchronously hatching species, parents are thought to either adjust brood size through death of marginal offspring (brood reduction), or feed the disadvantaged chicks to reduce the competitive hierarchy (parental compensation). Here, we show that parent American coots (Fulica americana) practice both strategies by switching from brood reduction to compensation across time. Late‐hatching chicks suffer higher mortality only for the first few days after hatching. Later, parents begin to exhibit parental aggression towards older chicks and each parent favours a single chick, both of which are typically the youngest of the surviving offspring. The late‐hatched survivors can equal or exceed their older siblings in size prior to independence. A mixed allocation strategy allows parents to compensate for the costs of competitive hierarchies while gaining the benefits of hatching asynchrony.  相似文献   

14.
Conflicts over the delivery and sharing of food among family members are expected to lead to evolution of exaggerated offspring begging for food. Coevolution between offspring begging intensity and parent response depends on the genetic architecture of the traits involved. Given a genetic correlation between offspring begging intensity and parental response, there may be fast and arbitrary divergence in these behaviours between populations. However, there is limited knowledge about the genetic basis of offspring solicitation and parental response and whether these traits are genetically correlated. In this study, we performed a partial cross-fostering experiment of young between pied and collared flycatchers (Ficedula hypoleuca and Ficedula albicollis) and recorded the behaviour of individual offspring and their (foster)parents. We found that nestling collared flycatchers reached a higher phenotypic quality, estimated both as mass at fledging and as intensity of their T-lymphocyte-mediated immune response when raised by heterospecific foster parents. However, although collared flycatchers begged relatively more intensively, we found no evidence of corresponding higher resistance (i.e. lower feeding rate) of adult collared flycatchers than of adult pied flycatchers. Thus, the difference in offspring begging intensity between the two species seems not to be a result of a difference in escalation of the parent-offspring conflict. Instead, the species' divergence in exaggeration of offspring begging intensity 'honestly' matches a difference between the species in offspring need. This interpretation is strengthened by the fact that the difference in begging intensity between the two species increased as the season progressed, coinciding with the higher sensitivity of nestling collared flycatchers to the seasonal decline in food availability. Thus, the behavioural differentiation appears to be a direct consequence of a life-history differentiation (offspring growth patterns).  相似文献   

15.
Species with elaborate parental care often also show intense sibling competition over resources provided by parents, suggesting joint evolution of these two traits. Despite this, the evolution of elaborate parental care and the evolution of intense sibling competition are often studied separately. Here, we examine the interaction between parental food provisioning and sibling competition for resources through the joint manipulation of the presence or absence of parents and brood size in a species with facultative parental care: the burying beetle Nicrophorus vespilloides. The effect of the interaction between the presence or absence of parents and brood size was strong; brood size had a strong effect on growth when parents provided care, but no effect when parents were absent. As in previous studies, offspring grew faster when parents were present than when parents were absent, and offspring grew faster in smaller broods than in larger broods. Our behavioral observations showed that brood size had a negative effect on both the amount of time parents spent providing resources to individual offspring and the offspring's effectiveness of begging, confirming that the level of sibling competition increased with brood size. Furthermore, offspring in larger broods shifted more from begging toward self-feeding as they grew older compared to offspring in small broods. Our study provides novel insights into the joint evolution of parental care and sibling competition, and the evolution of offspring begging signals. We discuss the implications of our results in light of recent theoretical work on the evolution of parental care, sibling competition, and offspring begging signals.  相似文献   

16.
Inbreeding depression is defined as a fitness decline in progeny resulting from mating between related individuals, the severity of which may vary across environmental conditions. Such inbreeding‐by‐environment interactions might reflect that inbred individuals have a lower capacity for adjusting their phenotype to match different environmental conditions better, as shown in prior studies on developmental plasticity. Behavioural plasticity is more flexible than developmental plasticity because it is reversible and relatively quick, but little is known about its sensitivity to inbreeding. Here, we investigate effects of inbreeding on behavioural plasticity in the context of parent–offspring interactions in the burying beetle Nicrophorus vespilloides. Larvae increase begging with the level of hunger, and parents increase their level of care when brood sizes increase. Here, we find that inbreeding increased behavioural plasticity in larvae: inbred larvae reduced their time spent associating with a parent in response to the length of food deprivation more than outbred larvae. However, inbreeding had no effect on the behavioural plasticity of offspring begging or any parental behaviour. Overall, our results show that inbreeding can increase behavioural plasticity. We suggest that inbreeding‐by‐environment interactions might arise when inbreeding is associated with too little or too much plasticity in response to changing environmental conditions.  相似文献   

17.
《Animal behaviour》1986,34(6):1791-1804
Taking as our starting point Trivers' (1974) account of parent-offspring conflict, we develop models of the influence of brood size on the optimal level of parental investment (PI) in the whole brood for parent and offspring, and on the magnitude of conflict between them. A modification of Trivers' model is proposed. In general, the benefit of an act of PI to an offspring in a brood of size N is (N+1)/N times the benefit to its parent. Therefore as brood size increases, offspring benefit approaches parental benefit, and this is because an increasing proportion of the offspring's benefit is being gained through siblings, to which offspring and parent are equally related. A distinction is drawn between ‘shared’ and ‘unshared’ types of PI. When PI is shared the total benefit accruing is not directly gained by all offspring but is shared amongst them (e.g. food brought to the young). In contrast, unshared PI can simultaneously benefit some or all of the brood (e.g. types of anti-predator defence). For shared investment, PI and conflict are predicted to increase with brood size. Two models of unshared anti-predator defence are described. If the predator characteristically takes the whole brood when it strikes (e.g. altricial nestlings) PI is predicted to increase and conflict decline with brood size, although this effect is inhibited or even reversed for high risk defence tactics because of the higher cost to larger broods if the parent dies. When the predator takes a single offspring (e.g. precocial birds) the parent's optimum PI is independent of brood size, the offspring's optimum PI declines in larger broods and conflict again declines with brood size. The parent is commonly expected to win the conflict over anti-predator care. Predictions concerning PI levels gain support from existing data, largely for birds, but evaluation of those for conflict must await the collection of new data. The distinction between shared and unshared investment is applicable to altruistic behaviour in general.  相似文献   

18.
The evolution of brood parasitism should affect adult phenotypic traits due to sexual selection as well as the parasite–host interactions, although it is rarely focused on. Sexual selection theory predicts extravagant secondary sexual characteristics in brood parasites whereas immature‐like modest sexual characteristics in parental species. This is because juvenile‐like immature traits can attract mates by exploiting parental care for young (i.e. attraction to young), and because the good parent process, which favours traits that signal parental care ability, would constrain the evolution of costly secondary sexual characteristics due to evolutionary trade‐offs between parental investment and sexually selected traits. Using a phylogenetic comparative approach, we studied plumage and bare‐part characteristics of adults in relation to brood parasitism in cuckoos (family Cuculidae), in which brood parasitism together with loss of parental care has evolved three times. As predicted, we found that nonparasitic cuckoos had plumage more similar to the juveniles than did brood parasitic cuckoos. Furthermore, nonparasitic cuckoos had a higher probability of having additional bare skin, that is a seemingly less costly, hatchling‐like trait, than did brood parasitic cuckoos. This finding further supports the link between parental care and sexual selection, although the influence of a parasite–host interaction cannot be excluded. The analysis of evolutionary pathways suggested interdependent evolution of additional bare skin and brood parasitism. Brood parasitism together with the loss of parental care may prevent the maintenance of a modest phenotype similar to the young, and vice versa in some cases.  相似文献   

19.
Consistent inter‐individual variation in behaviour over time and across contexts has been reported for a wide variety of animals, a phenomenon commonly referred to as personality. As behavioural patterns develop inside families, rearing conditions could have lasting effects on the expression of adult personality. In species with parental care, conflicts among family members impose selection on parental and offspring behaviour through coadaptation. Here, we argue that the interplay between the evolution of personality traits (i.e. boldness, exploration, activity, aggressiveness and sociability) expressed outside the family context and the specialized behaviours expressed inside families (i.e. offspring begging behaviour and parental response to offspring solicitations) can have important evolutionary consequences. Personality differences between parents may relate to the typically observed variation in the way they respond to offspring demand, and dependent offspring may already express personality differences, which may relate to the way they communicate with their parents and siblings. However, there has been little research on how personality relates to parental and offspring behaviours. Future research should thus focus on how and why personality may be related to the specialized parent and offspring behaviour that evolved as adaptations to family life.  相似文献   

20.
Parental food provisioning and offspring begging influence each other reciprocally. This makes both traits agents and targets of selection, which may ultimately lead to co‐adaptation. The latter may reflect co‐adapted parent and offspring genotypes or could be due to maternal effects. Maternal effects are in turn likely to facilitate in particular mother‐offspring co‐adaptation, further emphasized by the possibility that mothers are sometimes found to be more responsive to offspring need. However, parents may not only differ in their sensitivity, but often play different roles in postnatal care. This potentially impinges on the access to information about offspring need. We here manipulated the information on offspring need as perceived by parents by playing back begging calls at a constant frequency in the nest‐box of blue tits (Cyanistes caeruleus). We measured the parental response in provisioning to our treatment, paying particular attention to sex differences in parental roles and whether such differences alter the perception of the intensity of our manipulation. This enabled us to investigate whether an information asymmetry about offspring need exists between parents and how such an asymmetry relates to co‐adaptation between parental provisioning and offspring begging. Our results show that parents indeed differed in the frequency how often they perceived the playback due to the fact that females spent more time with their offspring in the nest box. Correcting for the effective exposure of an adult to the playback, the parental response in provisioning covaried more strongly (positive) with offspring begging intensity, independent of the parental sex, indicating coadaptation on the phenotypic level. Females were not more sensitive to experimentally increased offspring need than males, but they were exposed to more broadcasted begging calls. Therefore, sex differences in access to information about offspring need, due to different parental roles, have the potential to impinge on family conflicts and their resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号