首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report physiological and anatomical characteristics of water transport across roots grown in soil of two cultivars of grapevine (Vitis vinifera) differing in response to water stress (Grenache, isohydric; Chardonnay, anisohydric). Both cultivars have similar root hydraulic conductances (Lo; normalized to root dry weight) that change diurnally. There is a positive correlation between Lo and transpiration. Under water stress, both cultivars have reduced minimum daily Lo (predawn) attributed to the development of apoplastic barriers. Water-stressed and well-watered Chardonnay had the same diurnal change in amplitude of Lo, while water-stressed Grenache showed a reduction in daily amplitude compared with well-watered plants. Hydraulic conductivity of root cortex cells (Lpcell) doubles in Chardonnay but remains unchanged in Grenache. Of the two most highly expressed plasma membrane intrinsic protein (PIP) aquaporins in roots (VvPIP1;1 and VvPIP2;2), only VvPIP2;2 functions as a water channel in Xenopus laevis oocytes. VvPIP1;1 interacts with VvPIP2;2 to induce 3-fold higher water permeability. These two aquaporins are colocated in the root from in situ hybridization and immunolocalization of VvPIP1 and VvPIP2 subfamily members. They occur in root tip, exodermis, root cortex (detected up to 30 mm), and stele. VvPIP2;2 mRNA does not change diurnally or with water stress, in contrast to VvPIP1;1, in which expression reflects the differences in Lo and Lpcell between cultivars in their responses to water stress and rewatering. VvPIP1;1 may regulate water transport across roots such that transpirational demand is matched by root water transport capacity. This occurs on a diurnal basis and in response to water stress that corresponds to the difference in drought tolerance between the cultivars.  相似文献   

2.
The objective of this paper was to examine the relationship between Water Use Efficiency (WUE) at the canopy and leaf levels, to determine soil moisture conditions, which can optimize yield, and WUE of sweet sorghum (Sorghum bicolor (Linn.) Moench), thus providing some theoretical foundation for using marginal land effectively and developing production of sweet sorghum. Three levels of soil moisture conditions were established, and photosynthetic characteristics and yield were measured. The canopy apparent photo-synthetic rate (CAP) and leaf photosynthetic rate (P N) were reduced gradually with increased drought stress, and the CAP was lower than the P N under every soil moisture conditions. The P N had a midday depression phenomenon, but the CAP did not exhibit this midday depression phenomenon under severe drought stress. The linear regression relationship of CAP and P N was CAP = 1.5945 + 0.1496 P N. The canopy apparent WUEC and leaf WUEL were the highest under moderate drought stress. The first was 5.3 and 5.8 times higher than the WUEL in mid-July and late August, respectively. The stem fresh biomass yield was 77 tons/ha under moderate drought stress and WUE of aboveground biomass yield (WUEB) was also the highest. Our results showed that moderate drought stress did not result in a significant reduction in biomass yield but increased WUE significantly.  相似文献   

3.
  • Biochar (BC) has been reported to improve growth and drought resistance in many plants. However, adequate information on the drought resistance mechanism mediated of BC on Phragmites karka, a bioenergy plant, is not available.
  • The impact of BC addition (0%, 0.75% and 2.5%) on plant growth and physiology of P. karka under drought was assessed.
  • Soil water‐holding capacity and soil water content were significantly improved with 0.75% BC as compared with the un‐amended controls.
  • This resulted in improved plant performance under drought conditions. An increase of parameters, such as plant fresh and dry biomass, root to shoot ratio and root mass fraction, was paralleled by an increase of chlorophyll content, net photosynthesis rate and water use efficiency of plants. Plants treated with 0.75% BC experienced less oxidative stress due to higher photosystem II efficiency and stimulated activity of antioxidant defense systems.
  • Our results demonstrate that soil amendment with 0.75% BC allow the potential energy plant P. karka to grow in an arid habitat.
  相似文献   

4.
干旱胁迫下尖果沙枣幼苗的根系活力和光合特性   总被引:8,自引:0,他引:8  
Qiman Y  Muhtar Z  Tayer A 《应用生态学报》2011,22(7):1789-1795
以尖果沙枣1年生实生苗为材料,研究了自然干旱时不同土壤相对含水量对幼苗叶片细胞质膜相对透性、叶片相对含水量、根系活力、光合色素含量和光合参数等指标的影响.结果表明:土壤相对含水量从70%(CK)降到40%时,幼苗根系活力和净光合速率均逐渐上升并达到最大值,分别为1178μg.g-1.h-1和21.9μmol.m-2.s-1;光合色素含量稳步上升;蒸腾速率和水分利用效率均保持稳定;叶片细胞质膜相对透性保持较低水平.土壤相对含水量从40%降到20%时,幼苗叶片相对含水量仍在50%以上,叶片细胞质膜相对透性仍保持较低水平;根系活力和光合色素含量仍较高;但其他光合参数开始缓慢下降.土壤相对含水量从10%降到5%时,幼苗叶片细胞质膜相对透性急剧上升;叶片相对含水量、根系活力、总叶绿素含量、光合参数均极显著下降;而土壤相对含水量为10%时幼苗表现出最高的水分利用效率.尖果沙枣土壤相对含水量最好控制在40%~50%,其1年生实生苗的永久萎蔫系数为4.3%(土壤相对含水量).  相似文献   

5.
The gas exchange traits of wild type soybeans (cv. Clark) and a near-isogenic, chlorophyll-deficient line homozygous for the recessive allele y9 (y9y9) were compared under either well-watered or water-stress conditions. Mature leaves of y9 had a 65% lower chlorophyll content than wild type. However, the net photosynthetic rate (PN) of y9 leaves was only 20% lower than in the wild type, irrespective of water availability. Transpiration rates (E) were significantly higher in leaves of y9, compared to the wild type, either under well-watered or stress conditions. The higher E of y9 correlated with increased stomatal conductance, particularly in the abaxial epidermis, where more than 70% of the stomata were located. The combination of lower PN and increased E resulted in a significant decrease of water use efficiency in y9, at both water availability levels. The relative water content decreased in stressed leaves, much more in y9 than in wild type leaves, probably because of the higher E of the mutant line. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Luquez  V.M.  Guiamet  J.J.  Montaldi  E.R. 《Photosynthetica》1998,34(1):125-131
The gas exchange traits of wild type soybeans (cv. Clark) and a near-isogenic, chlorophyll-deficient line homozygous for the recessive allele y9 (y9y9) were compared under either well-watered or water-stress conditions. Mature leaves of y9 had a 65% lower chlorophyll content than wild type. However, the net photosynthetic rate (PN) of y9 leaves was only 20% lower than in the wild type, irrespective of water availability. Transpiration rates (E) were significantly higher in leaves of y9, compared to the wild type, either under well-watered or stress conditions. The higher E of y9 correlated with increased stomatal conductance, particularly in the abaxial epidermis, where more than 70% of the stomata were located. The combination of lower PN and increased E resulted in a significant decrease of water use efficiency in y9, at both water availability levels. The relative water content decreased in stressed leaves, much more in y9 than in wild type leaves, probably because of the higher E of the mutant line.  相似文献   

7.
8.
Lei  Z. Y.  Han  J. M.  Yi  X. P.  Zhang  W. F.  Zhang  Y. L. 《Photosynthetica》2018,56(4):1326-1335
Photosynthetica - Drought stress causes changes in vein and stomatal density. The objectives of this study were to determine (1) if the changes in vein and stomatal density are coordinated in...  相似文献   

9.
ABSTRACTPaeonia ost iihas become an economically important oil crop in recent years, but its growth is seriously affected by drought stress in dry areas. In this study, the alleviating effect of fulvic acid (FA) on potted P. ostii under natural drought stress was investigated. The natural drought stress adopted in this experiment was mainly characterized by the low soil water content, and the roots of plants cannot absorb enough water to compensate for the consumption of transpiration, which affects the normal physiological activities and causes damage. The results showed that FA treatment significantly increased the leaf water content and antioxidant enzyme activities and decreased reactive oxygen species (ROS) accumulation, the proline (Pro) content, and the relative electrical conductivity (REC). Moreover, FA treatment improved photosynthetic parameters and chlorophyll (Chl) fluorescence parameters, maintained the integrity of chloroplasts and mesophyll cells, and increased the expression level of drought-tolerant genes. These results indicated that FA treatment could induce antioxidant enzymes to eliminate ROS, reduce membrane lipid peroxidation and decrease damage to photosynthesis in P. ostii under drought stress, which would provide a measure for alleviating the damage of P. ostii caused by drought stress.KEYWORDS: P. ostii, fulvic acid, drought stress, antioxidant enzymes, photosynthesis  相似文献   

10.
黄腐酸(FA)可参与植物耐旱性的调控,但关于其对干旱胁迫下黄瓜光合作用的调控机制尚不清楚。本研究以‘津优35'黄瓜为试材,采用聚乙二醇(PEG-6000)模拟干旱,通过喷施不同浓度(0、100、300、500、700、900 mg·L-1)FA,研究其缓解黄瓜干旱胁迫的浓度效应及其对光合关键酶活性、叶绿体超微结构、叶绿素荧光参数、水分利用效率及产量和品质的影响。结果表明: 室内试验中,与对照(0 mg·L-1)相比,不同浓度FA处理均显著提高了干旱胁迫下黄瓜幼苗的叶片相对含水量和叶面积,降低旱害指数、丙二醛含量和电解质渗漏率,随着FA浓度的增加其缓解效应呈现先升高后下降的趋势,且以700 mg·L-1 FA的作用效果最好。FA显著增加干旱胁迫下黄瓜幼苗的叶绿素含量、Rubisco和Rubisco活化酶(RCA)活性及基因表达、净光合速率(Pn)、最大光化学效率和实际光化学效率、单位面积吸收光能、捕获光能、电子传递的量子产额和PSⅠ活性,降低K点的上升,维持叶绿体超微结构。温室控水试验表明,FA可显著增加干旱胁迫下温室黄瓜的水分利用效率,促进干物质量的积累,增加果实中Vc、可溶性糖、可溶性蛋白和游离氨基酸含量,降低单宁含量。综上,施用FA可在干旱条件下提高温室黄瓜产量,改善果实品质。  相似文献   

11.
Endophyte-infected (EI) seeds of Lolium perenne L. were used to attain endophyte-free (EF) population by heating the seeds at 43°C for 15 min and then 57°C for 25 min. Relative water content (RWC), chlorophyll, soluble sugar and starch content of EI and EF populations under normal and drought stress conditions were compared to investigate the effect of endophyte infection on the host plant. Under severe stress, RWC of EI leaf was significantly higher than that of EF leaf, i.e. EI plants took more advantages over EF plants in water-holding ability. Under mild stress, endophyte could enhance soluble sugars in host plants to improve their osmotic ability. With stress intensification, the improvement of endophyte no longer existed, and more photosynthetic products (such as starch) accumulated in EI plants to survive through the undesirable conditions. In the next spring, EI populations will recover more rapidly than EF populations. The biomass of a population is closely related to its photosynthesis. Under severe stress, EI population significantly accumulated more biomass than EF population. As far as photosynthetic pigments were concerned, contents of Chla, Chlb and Car of EI plants were close to those of EF plants, which suggested that endophyte infection didn’t alleviate photosynthetic pigments from being destroyed by drought stress, and endophyte might improve photosynthesis ability of its host plant in other ways.  相似文献   

12.
以含有内生真菌的黑麦草 (L olium perenne L.)种子为材料 ,采用加热处理方式构建内生真菌非感染的黑麦草种群 ,通过比较内生真菌感染 (EI)和非感染 (EF)植株在正常条件下和干旱胁迫条件下叶片相对水分含量、叶绿素、可溶性糖和淀粉含量等指标的差异 ,探讨黑麦草 EI和 EF种群对干旱胁迫的适应性差异。结果表明 :在中度胁迫后期 ,EI植株叶片的 RWC显著高于 EF植株 ,即 EI植株的保水能力更强。轻度水分胁迫下 ,内生真菌感染可使其宿主植物的可溶性糖含量增加 ,以增强宿主的渗透调节能力 ,随着干旱胁迫强度的加大 ,内生真菌的这一增益效应不再起作用 ,此时 ,宿主植物将更多的光合产物——淀粉积累于体内 ,以度过不良环境。第 2年春天 EI和 EF种群的恢复生长情况进一步表明 ,经过中度干旱胁迫后 ,EI种群的恢复更为迅速。生物量的大小是植物种群净光合作用能力的直接体现 ,研究中在中度干旱胁迫条件下 ,黑麦草 EI种群的生物量显著高于EF种群 ,但从光合色素的变化来看 ,相同水分状况下 EI和 EF植株的 Chla、Chlb以及 Car的变化趋势比较接近 ,这说明内生真菌感染并未缓解干旱胁迫对光合色素的破坏 ,内生真菌可能通过其它途径来改善宿主植物的光合能力  相似文献   

13.
The plants produced by in vitro methods are free of any microflora contrary to natural systems where plants are colonized by symbiotic fungi. The present paper reports the experiments carried out to evaluate the role of arbuscular endomycorrhizal fungi in development of micropropagated strawberries and their photosynthetic activity (measured by chlorophyll fluorescence) under drought conditions. Mycorrhization strongly affected growth and tolerance to water deficiency of the plants cultivated in greenhouse. Wilting of not-mycorrhized plants was accompanied by drastic increase of Fo and Tfm and decrease of Fm. At the same time, the value of these parameters for mycorrhized plants did not change. Drastic decrease in the value of parameters Fv/Fm, Fv/Fo and Fo/Fm for plants without AMF appeared at the end of dry period. Rise of Fs and decrease Rfd was noted only for not-mycorrhized plants. The plants colonized by fungi, fully recovered their photosynthetic activity when watering was restored.  相似文献   

14.
 Arbuscular mycorrhizal fungi (AMF) living symbiotically with host plants enhance plant growth by improving the acquisition of mineral nutrients and water relations. This study determined the effects of AMF inoculation on growth, benefit/cost and water-use efficiency (grams dry matter produced per kilogram water evapotranspired) in two durum wheat genotypes (drought sensitive and drought tolerant) under water-stressed and well-watered conditions. Plants were grown in a low-P silty clay (Typic Xerochrept) soil mix in a greenhouse. Shoot and root dry matter (DM) and root AMF colonization were higher for well-watered than for water-stressed plants. The mycorrhizal plants were more water-use efficient than nonmycorrhizal plants. Shoot DM differences between mycorrhizal and nonmycorrhizal plants represent the benefit derived by plants from AMF-root associations. Shoot DM differences between mycorrhizal and nonmycorrhizal plants under similar conditions of water treatment represent the cost to the plant of AMF-root associations. Values of benefit/cost for AMF-root associations were highest when plants were water-stressed and decreased under well-watered conditions. Genotypic differences in calculated costs and benefits were pronounced. Benefit/cost analysis may be helpful in evaluating host plant genotypes in order to optimize efficiencies of AMF symbiosis under different environmental conditions. Accepted: 4 April 1998  相似文献   

15.
干旱胁迫对不同施氮水平麻疯树幼苗光合特性及生长的影响   总被引:10,自引:2,他引:10  
采用盆栽控水的方法,研究了干旱胁迫(连续干旱0 d,5 d,10 d,…,45 d)对不同施氮水平(对照 0 kg N·hm-2、低氮 96 kg N·hm-2、中氮 288 kg N·hm-2、高氮 480 kg N·hm-2)麻疯树幼苗光合特性及其生长的影响.结果表明: 随干旱胁迫强度的增加,各施氮水平麻疯树幼苗叶片相对含水量、苗高生长量、地径生长量、叶面积、净光合速率、蒸腾速率和气孔导度均降低,且各水分处理间差异极显著(P<0.01);随干旱时间的延长,叶绿素含量和水分利用效率表现出先升高后降低的趋势,而胞间CO2浓度呈先降低后升高的趋势.正常供水时,施氮处理均不同程度提高了麻疯树幼苗的光合能力,促进了麻疯树幼苗的生长,且施氮量越高效果越好;干旱条件下,氮素营养对植株光合能力和生长的影响与干旱程度和施氮水平有关.轻度干旱时,提高施氮水平对植株光合能力和生长具有明显的促进作用;中度干旱时,中氮的促进作用明显高于其他施氮水平;严重干旱时,低氮的促进效果最好,高氮的促进作用减弱并逐渐转向抑制.  相似文献   

16.
不同时期干旱胁迫对甘薯光合效率和耗水特性的影响   总被引:2,自引:0,他引:2  
在2014-2015年遮雨棚下种植甘薯品种‘济薯21’,以全生育期正常灌水(WW)为对照,研究了全生育期(DS)、发根分枝期(DS1)、蔓薯并长期(DS2)和快速膨大期(DS3)干旱胁迫对甘薯光合作用、产量和耗水特性的影响.结果表明: DS、DS1、DS2和DS3的生物产量分别比WW降低31.3%、21.2%、19.6%和7.7%,收获指数分别降低19.9%、14.5%、14.1%和6.5%,薯干产量分别降低45.3%、33.1%、31.3%和14.2%.栽后100 d,DS、DS1、DS2和DS3的叶面积系数分别比WW减少77.1%、60.1%、39.2%和17.1%;栽后90 d,叶片光合速率分别比WW降低56.7%、26.6%、18.7%和9.5%.干旱胁迫降低了甘薯垄间的日蒸发量、蒸腾速率、耗水量和日耗水量,降低了土壤水利用效率而提高了灌溉水利用效率.干旱胁迫通过降低叶面积系数和光合速率,减少了生物产量及其向块根的分配,进而导致薯干产量显著降低.干旱胁迫时间越早、持续时间越长,对叶面积系数和光合速率,以及生物产量和收获指数的不利影响越大、导致减产幅度越大,水分利用效率越低.在有限的灌水条件下,甘薯生产中应尽可能减少前期干旱.  相似文献   

17.
Low temperature during the vegetative stage affects rice (Oryza sativa L.) seed-setting rate in Heilongjiang province at Northeast China. However, little is known about changes of the photosynthetic rate and physiological response in contrasting rice cultivars during chilling periods. In this study, two rice cultivars with different chilling tolerance were treated with 15°C from June 27 to July 7. The chilling-susceptive cultivar, Longjing11 (LJ11), showed a significant decrease in a ripening rate and seed-setting rate after being treated for four days, whilst chilling-tolerant cultivar, Kongyu131 (KY131), was only slightly affected after 4-d treatment. The photosynthetic activities, chlorophyll contents, and antioxidative enzyme activities in LJ11 decreased significantly along with the chilling treatment. The decrease in ß-carotene contents might play a role as it could cause direct photooxidation of chlorophylls and lead to the inhibition of the photosynthetic apparatus. In the meantime, no significant damage was found in leaves of KY131 from June 27 to July 11. In conclusion, the chilling-tolerance mechanism of rice is tightly related to the photosynthetic rate, metabolism of reactive oxygen species, and scavenging system in the vegetative stage.  相似文献   

18.
In the context of an increased risk of extreme drought events across Europe during the next decades, the capacity of trees to recover and survive drought periods awaits further attention. In summer 2005, 4-year-old beech (Fagus sylvatica L.) saplings were watered regularly or were kept for 4 weeks without irrigation in the field and then re-watered again. Changes of plant water status, leaf gas exchange and Chl a fluorescence parameters, as well as alterations in leaf pigment composition were followed. During the drought period, stomatal conductance (g(s)) and net photosynthesis (P(n)) decreased in parallel with increased water deficit. After 14 days without irrigation, stomata remained closed and P(n) was almost completely inhibited. Reversible downregulation of PSII photochemistry [the maximum quantum efficiency of PSII (F(v)/F(m))], enhanced thermal dissipation of excess excitation energy and an increased ratio of xanthophyll cycle pigments to chlorophylls (because of a loss of chlorophylls) contributed to an enhanced photo-protection in severely stressed plants. Leaf water potential was restored immediately after re-watering, while g(s), P(n) and F(v)/F(m) recovered only partially during the initial phase, even when high external CO(2) concentrations were applied during the measurements, indicating lasting non-stomatal limitations. Thereafter, P(n) recovered completely within 4 weeks, meanwhile g(s) remained permanently lower in stressed than in control plants, leading to an increased 'intrinsic water use efficiency' (P(n)/g(s)). In conclusion, although severe drought stress adversely affected photosynthetic performance of F. sylvatica (a rather drought-sensitive species), P(n) was completely restored after re-watering, presumably because of physiological and morphological adjustments (e.g. stomatal occlusions).  相似文献   

19.
为研究干旱胁迫下施加褪黑素对北美红栎幼树光合性能和抗氧化酶系统的影响,以当年生北美红栎幼树实生苗为试验材料,利用不同浓度的聚乙二醇(PEG-6000)溶液模拟干旱,研究干旱胁迫对北美红栎幼树光合性能及抗氧化酶活性的影响。结果表明:在PEG模拟的干旱胁迫下,北美红栎幼树的光合作用受到抑制并破坏了体内的氧化还原平衡,抗氧化物酶活性提高。在干旱胁迫开始前喷施100μM的褪黑素能够提高北美红栎幼树清除活性氧的能力,维持干旱胁迫条件下较高的净光合速率并能有效地缓解由于干旱胁迫对植物造成的损伤。试验结果为实践中栽培管理北美红栎幼树提供了参考。  相似文献   

20.
This study reports the effects of light availability during the acclimatization phase on photosynthetic characteristics of micropropagated plantlets of grapevine (Vitis vinifera L.) and of a chestnut hybrid (Castanea sativa × C. crenata). The plantlets were acclimatized for 4 weeks (grapevine) or 6 weeks (chestnut), under two irradiance treatments, 150 and 300 mol m–2 s–1 after in vitro phases at 50 mol m–2 s–1. For both treatments and both species, leaves formed during acclimatization (so-called `new leaves') showed higher photosynthetic capacity than the leaves formed in vitro either under heterotrophic or during acclimatization (so-called `persistent leaves'), although lower than leaves of young potted plants (so-called `greenhouse leaves'). In grapevine, unlike chestnut, net photosynthesis and biomass production increased significantly with increased light availability. Several parameters associated with chlorophyll a fluorescence indicated photoinhibition symptoms in chestnut leaves growing at 300 mol m–2 s–1. The results taken as a whole suggest that 300 mol m–2 s–1 is the upper threshold for acclimatization of chestnut although grapevine showed a better response than chestnut to an increase in light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号