共查询到20条相似文献,搜索用时 0 毫秒
1.
为研究北方泥炭沼泽湿地二氧化碳(CO2)和甲烷(CH4)浓度随深度的变化规律及其影响因素,选取欧洲北部典型雨养泥炭地贝尔山湿地(BBM)和舒特兹山湿地(SBM)两个采样点,通过原位采集泥炭剖面温室气体、孔隙水以及土壤样品,结合傅里叶变换红外光谱(FTIR)技术、碳氮同位素技术,探讨泥炭土壤的分解程度及温室气体浓度变化的关系。研究结果表明:(1)BBM采样点地下部的CO2浓度变化规律总体呈现随深度波动减少趋势,值多在3000μmol/L附近波动,最大值为4210.74μmol/L(120 cm),SBM采样点的CO2浓度随深度先增后减,60 cm以上在1800μmol/L附近波动,60 cm以下在3000μmol/L附近波动,最大值为4191.94μmol/L(90 cm);BBM和SBM地下部CH4浓度都随深度增大,并且在60cm以下浓度增加较快,BBM最大值为735.90μmol/L(260 cm),SBM最大值为543.51μmol/L(170 cm)。(2)BBM和SBM... 相似文献
2.
Results of hydrochemical and stable isotope measurements during the ice-breaking period on Lake Baikal indicate an apparent lack of relationship between measured δ13C of dissolved inorganic carbon (DIC) and phytoplankton below the trophogenic layer. While planktonic values of −31.7 to −33.5‰ are within a typical lacustrine range, the δ13C values of DIC turned out to be very negative, from −28.9 to −35.6‰. These isotopic values of DIC appear to be associated with oxidation of methane that accumulated during winter ice cover period. At the time of sampling, however, the observed depletion did not affect the phytoplankton/DIC fractionation relationship, because the difference between phytoplankton and DIC (−20 to −22‰ in surface waters) lies within the expected range of the fractionation coefficient. By analogy with small lakes, we explain this lack of relationship by the time lag between peak productivity and peak methane oxidation. Our interpretation of the Baikal DIC isotopic signature is consistent with methanogenesis in bottom sediments and with the known presence of widespread unstable gas hydrates and active methane seeps on the lake floor. Our findings suggest that methane is an important component of the Baikal carbon cycle, that late winter concentrations of methane in Baikal under ice may be 3–4 orders of magnitude higher than previously reported values for summer, and that the lake may be emitting a significant amount of methane to the atmosphere. 相似文献
3.
- With the recent population increase in beavers (Castor spp.), a considerable amount of new riparian habitat has been created in the Holarctic. We evaluated how beaver‐induced floods affect carbon (C) dynamics in the beaver ponds and in the water‐atmosphere and riparian zone interfaces.
- Beaver disturbance affects soil organic C storage by decreasing or increasing it, resulting in a redistribution of C. Upon flooding, the concentration of dissolved organic carbon (DOC ) increases in the water. This C can be released into the atmosphere, it can settle down to the bottom sediments, it can be sequestered by vegetation, or it can be transported downstream. The carbon dioxide (CO 2) emissions vary between 0.14 and 11.2 g CO 2 m?2 day?1, averaging 4.9 CO 2 g m?2 day?1. The methane (CH 4) emissions vary too, from 27 mg m?2 day?1 to 919 mg m?2 day?1, averaging 222 mg CH 4 m?2 day?1. Globally, C emission from beaver ponds in the form of CH 4 and CO 2 may be 3.33–4.62 Tg (teragram, 1012 g) year?1.
- The yearly short‐term sedimentation rates in beaver ponds vary between 0.4 and 47 cm year?1, and individual ponds contain 9–6355 m3 of sediment. The approximate global estimate for yearly C sedimentation is 3.8 Tg C; beaver ponds globally contain 380 Tg sedimented C. After being formed, beaver pond deposits can remain for millennia.
- Both C sequestration and CO 2 and CH 4 emissions in ponds of various ages should be taken into account when considering the net effect of beavers on the C dynamics. With present estimates, beaver ponds globally range from a sink (?0.47 Tg year?1) to a source (0.82 Tg year?1) of C. More research is needed with continuous flux measurements and from ponds of different ages. Likewise, there is a need for more studies in Eurasia to understand the effect of beaver on C biogeochemistry.
4.
Christina Schdel Edward A. G. Schuur Rosvel Bracho Bo Elberling Christian Knoblauch Hanna Lee Yiqi Luo Gaius R. Shaver Merritt R. Turetsky 《Global Change Biology》2014,20(2):641-652
High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long‐term (>1 year) aerobic soil incubations from 121 individual samples from 23 high‐latitude ecosystems located across the northern circumpolar permafrost zone. Using a three‐pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes. 相似文献
5.
MASAYUKI KAWAHIGASHI KLAUS KAISER† REJ RODIONOV† GEORG GUGGENBERGER† 《Global Change Biology》2006,12(10):1868-1877
Because of low net production in arctic and subarctic surface water, dissolved organic matter (DOM) discharged from terrestrial settings plays an important role for carbon and nitrogen dynamics in arctic aquatic systems. Sorption, typically controlling the export of DOM from soil, may be influenced by the permafrost regime. To confirm the potential sorptive control on the release of DOM from permafrost soils in central northern Siberia, we examined the sorption of DOM by mineral soils of Gelisols and Inceptisols with varying depth of the active layer. Water‐soluble organic matter in the O horizons of the Gelisols was less (338 and 407 mg C kg?1) and comprised more dissolved organic carbon (DOC) in the hydrophobic fraction (HoDOC) (63% and 70%) than in the O horizons of the Inceptisols (686 and 706 mg C kg?1, 45% and 48% HoDOC). All A and B horizons from Gelisols sorbed DOC strongly, with a preference for HoDOC. Almost all horizons of the Inceptisols showed a weaker sorption of DOC than those of the Gelisols. The C horizons of the Inceptisols, having a weak overall DOC sorption, sorbed C in the hydrophilic fraction (HiDOC) stronger than HoDOC. The reason for the poor overall sorption and also the preferential sorption of HiDOC is likely the high pH (pH>7.0) of the C horizons and the smaller concentrations of iron oxides. For all soils, the sorption of HoDOC related positively to oxalate‐ and dithionite–citrate‐extractable iron. The A horizons released large amounts of DOC with 46–80% of HiDOC. The released DOC was significantly (r=0.78, P<0.05) correlated with the contents of soil organic carbon. From these results, we assume that large concentrations of DOM comprising large shares of HiDOC can pass mineral soils where the active layer is thin (i.e. in Gelisols), and enter streams. Soils with deep active layer (i.e. Inceptisols), may release little DOM because of more frequent infiltration of DOM into their thick mineral horizons despite their smaller contents of reactive, poorly crystalline minerals. The results obtained for the Inceptisols are in agreement with the situation observed for streams connecting to Yenisei at lower latitudes than 65°50′ with continuous to discontinuous permafrost. The smaller sorption of DOM by the Gelisols is in agreement with the larger DOM concentrations in more northern catchments. However, the Gelisols preferentially retained the HoDOC which dominates the DOC in streams towards north. This discrepancy can be explained by additional seepage water from the organic horizons that is discharged into streams without intensive contact with the mineral soil. 相似文献
6.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples. 相似文献
7.
We used long-term laboratory incubations and chemical fractionation to characterize the mineralization dynamics of organic soils from tussock, shrub, and wet meadow tundra communities, to determine the relationship between soil organic matter (SOM) decomposition and chemistry, and to quantify the relative proportions of carbon (C) and nitrogen (N) in tundra SOM that are biologically available for decomposition. In all soils but shrub, we found little decline in respiration rates over 1 year, although soils respired approximately a tenth to a third of total soil C. The lack of decline in respiration rates despite large C losses indicates that the quantity of organic matter available was not controlling respiration and thus suggests that something else was limiting microbial activity. To determine the nature of the respired C, we analyzed soil chemistry before and after the incubation using a peat fractionation scheme. Despite the large losses of soil C, SOM chemistry was relatively unchanged after the incubation. The decomposition dynamics we observed suggest that tundra SOM, which is largely plant detritus, fits within existing concepts of the litter decay continuum. The lack of changes in organic matter chemistry indicates that this material had already decomposed to the point where the breakdown of labile constituents was tied to lignin decomposition. N mineralization was correlated with C mineralization in our study, but shrub soil mineralized more and tussock soil less N than would have been predicted by this correlation. Our results suggest that a large proportion of tundra SOM is potentially mineralizable, despite the fact that decomposition was dependent on lignin breakdown, and that the historical accumulation of organic matter in tundra soils is the result of field conditions unfavorable to decomposition and not the result of fundamental chemical limitations to decomposition. Our study also suggests that the anticipated increases in shrub dominance may substantially alter the dynamics of SOM decomposition in the tundra. Received 31 January 2002; accepted 16 July 2002. 相似文献
8.
Bo Yi Chaoqun Lu Wenjuan Huang Wenjuan Yu Jihoon Yang Adina Howe Samantha R. Weintraub-Leff Steven J. Hall 《Global Change Biology》2023,29(20):5968-5980
Confidence in model estimates of soil CO2 flux depends on assumptions regarding fundamental mechanisms that control the decomposition of litter and soil organic carbon (SOC). Multiple hypotheses have been proposed to explain the role of lignin, an abundant and complex biopolymer that may limit decomposition. We tested competing mechanisms using data-model fusion with modified versions of the CN-SIM model and a 571-day laboratory incubation dataset where decomposition of litter, lignin, and SOC was measured across 80 soil samples from the National Ecological Observatory Network. We found that lignin decomposition consistently decreased over time in 65 samples, whereas in the other 15 samples, lignin decomposition subsequently increased. These “lagged-peak” samples can be predicted by low soil pH, high extractable Mn, and fungal community composition as measured by ITS PC2 (the second principal component of an ordination of fungal ITS amplicon sequences). The highest-performing model incorporated soil biogeochemical factors and daily dynamics of substrate availability (labile bulk litter:lignin) that jointly represented two hypotheses (C substrate limitation and co-metabolism) previously thought to influence lignin decomposition. In contrast, models representing either hypothesis alone were biased and underestimated cumulative decomposition. Our findings reconcile competing hypotheses of lignin decomposition and suggest the need to precisely represent the role of lignin and consider soil metal and fungal characteristics to accurately estimate decomposition in Earth-system models. 相似文献
9.
Arctic soils store large amounts of labile soil organic matter (SOM) and several studies have suggested that SOM characteristics may explain variations in SOM cycling rates across Arctic landscapes and Arctic ecosystems. The objective of this study was to investigate the influence of routinely measured soil properties and SOM characteristics on soil gross N mineralization and soil GHG emissions at the landscape scale. This study was carried out in three Canadian Arctic ecosystems: Sub‐Arctic (Churchill, MB), Low‐Arctic (Daring Lake, NWT), and High‐Arctic (Truelove Lowlands, NU). The landscapes were divided into five landform units: (1) upper slope, (2) back slope, (3) lower slope, (4) hummock, and (5) interhummock, which represented a great diversity of Static and Turbic Cryosolic soils including Brunisolic, Gleysolic, and Organic subgroups. Soil gross N mineralization was measured using the 15N dilution technique, whereas soil GHG emissions (N2O, CH4, and CO2) were measured using a multicomponent Fourier transform infrared gas analyzer. Soil organic matter characteristics were determined by (1) water‐extractable organic matter, (2) density fractionation of SOM, and (3) solid‐state CPMAS 13C nuclear magnetic resonance (NMR) spectroscopy. Results showed that gross N mineralization, N2O, and CO2 emissions were affected by SOM quantity and SOM characteristics. Soil moisture, soil organic carbon (SOC), light fraction (LF) of SOM, and O‐Alkyl‐C to Aromatic‐C ratio positively influenced gross N mineralization, N2O and CO2 emissions, whereas the relative proportion of Aromatic‐C negatively influenced those N and C cycling processes. Relationships between SOM characteristics and CH4 emissions were not significant throughout all Arctic ecosystems. Furthermore, results showed that lower slope and interhummock areas store relatively more labile C than upper and back slope locations. These results are particularly important because they can be used to produce better models that evaluate SOM stocks and dynamics under several climate scenarios and across Arctic landscapes and ecosystems. 相似文献
10.
11.
Permafrost soils are an important reservoir of carbon (C) in boreal and arctic ecosystems. Rising global temperature is expected to enhance decomposition of organic matter frozen in permafrost, and may cause positive feedback to warming as CO2 is released to the atmosphere. Significant amounts of organic matter remain frozen in thick mineral soil (loess) deposits in northeastern Siberia, but the quantity and lability of this deep organic C is poorly known. Soils from four tundra and boreal forest locations in northeastern Siberia that have been continuously frozen since the Pleistocene were incubated at controlled temperatures (5, 10 and 15°C) to determine their potential to release C to the atmosphere when thawed. Across all sites, CO2 with radiocarbon (14C) ages ranging between~21 and 24 ka bp was respired when these permafrost soils were thawed. The amount of C released in the first several months was strongly correlated to C concentration in the bulk soil in the different sites, and this correlation remained the same for fluxes up to 1 year later. Fluxes were initially strongly related to temperature with a mean Q10 value of 1.9±0.3 across all sites, and later were unrelated to temperature but still correlated with bulk soil C concentration. Modeled inversions of Δ14CO2 values in respiration CO2 and soil C components revealed mean contribution of 70% and 26% from dissolved organic C to respiration CO2 in case of two permafrost soils, while organic matter fragments dominated respiration (mean 68%) from a surface mineral soil that served as modern reference sample. Our results suggest that if 10% of the total Siberian permafrost C pool was thawed to a temperature of 5°C, about 1 Pg C will be initially released from labile C pools, followed by respiration of~40 Pg C to the atmosphere over a period of four decades. 相似文献
12.
CHRISTIAN WILLE LARS KUTZBACH TORSTEN SACHS† DIRK WAGNER† EVA-MARIA PFEIFFER‡ 《Global Change Biology》2008,14(6):1395-1408
Eddy covariance measurements of methane flux were carried out in an arctic tundra landscape in the central Lena River Delta at 72°N. The measurements covered the seasonal course of mid‐summer to early winter in 2003 and early spring to mid‐summer in 2004, including the periods of spring thaw and autumnal freeze back. The study site is characterized by very cold and deep permafrost and a continental climate with a mean annual air temperature of ?14.7 °C. The surface is characterized by wet polygonal tundra, with a micro‐relief consisting of raised moderately dry sites, depressed wet sites, polygonal ponds, and lakes. We found relatively low fluxes of typically 30 mg CH4 m?2 day?1 during mid‐summer and identified soil temperature and near‐surface atmospheric turbulence as the factors controlling methane emission. The influence of atmospheric turbulence was attributed to the high coverage of open water surfaces in the tundra. The soil thaw depth and water table position were found to have no clear effect on methane fluxes. The excess emission during spring thaw was estimated to be about 3% of the total flux measured during June–October. Winter emissions were modeled based on the functional relationships found in the measured data. The annual methane emission was estimated to be 3.15 g m?2. This is low compared with values reported for similar ecosystems. Reason for this were thought to be the very low permafrost temperature in the study region, the sandy soil texture and low bio‐availability of nutrients in the soils, and the high surface coverage of moist to dry micro‐sites. The methane emission accounted for about 14% of the annual ecosystem carbon balance. Considering the global warming potential of methane, the methane emission turned the tundra into an effective greenhouse gas source. 相似文献
13.
ADRIAN KAMMER FRANK HAGEDORN ILYA SHEVCHENKO† JENS LEIFELD‡ GEORG GUGGENBERGER§ TAMARA GORYACHEVA¶ REAS RIGLING PAVEL MOISEEV¶ 《Global Change Biology》2009,15(6):1570-1583
Historical photographs document that during the last century, forests have expanded upwards by 60–80 m into former tundra of the pristine Ural mountains. We assessed how the shift of the high‐altitude treeline ecotone might affect soil organic matter (SOM) dynamics. On the gentle slopes of Mali Iremel in the Southern Urals, we (1) determined the differences in SOM stocks and properties from the tundra at 1360 m above sea level (a.s.l.) to the subalpine forest at 1260 m a.s.l., and (2) measured carbon (C) and nitrogen (N) mineralization from tundra and forest soils at 7 and 20 °C in a 6‐month incubation experiment. C stocks of organic layers were 3.6±0.3 kg C m?2 in the tundra and 1.9±0.2 kg C m?2 in the forest. Mineral soils down to the bedrock stored significantly more C in the forest, and thus, total soil C stocks were slightly but insignificantly greater in the forest (+3 kg C m?2). Assuming a space for time approach based on tree ages suggests that the soil C sink due to the forest expansion during the last century was at most 30 g C m?2 yr?1. Diffuse reflective infrared spectroscopy and scanning calorimetry revealed that SOM under forest was less humified in both organic and mineral horizons and, therefore, contained more available substrate. Consistent with this result, C mineralization rates of organic layers and A horizons of the forest were two to four times greater than those of tundra soils. This difference was similar in magnitude to the effect of increasing the incubation temperature from 7 to 20 °C. Hence, indirect climate change effects through an upward expansion of forests can be much larger than direct warming effects (Δ0.3 K across the treeline). Net N mineralization was 2.5 to six times greater in forest than in tundra soils, suggesting that an advancing treeline likely increases N availability. This may provide a nutritional basis for the fivefold increase in plant biomass and a tripling in productivity from the tundra to the forest. In summary, our results suggest that an upward expansion of forest has small net effects on C storage in soils but leads to changes in SOM quality, accelerates C cycling and increases net N mineralization, which in turn might stimulate plant growth and thus C sequestration in tree biomass. 相似文献
14.
苔原生态系统土壤碳储量巨大,其微小的变化都可能显著影响大气CO2的浓度,对调节全球碳平衡有着重要的意义。长白山岳桦(Betula ermanii)林下的草本植物入侵苔原,导致苔原植被发生显著变化,为揭示不同外源碳输入对土壤有机碳矿化及组分的影响,开展了120 d的室内培养实验。选取苔原带原生灌木优势种牛皮杜鹃(Rhododendron aureum)和入侵草本优势种小叶章(Deyeuxia angustifolia)的凋落物,采集牛皮杜鹃样方内表层土样(0-15 cm),设置6个凋落物处理模拟不同外源碳输入。研究结果表明:(1)与灌木凋落物输入相比,随着草本外源碳输入比例的提高,增加了土壤有机碳矿化速率、土壤有机碳累积矿化量和正激发效应,特别是培养初期的土壤有机碳矿化速率和正激发效应增加更为显著;并且较高品质的混合凋落物输入使各项测量指标高于品质更高的单一草本植物凋落物输入。(2)与灌木凋落物输入相比,随着草本外源碳输入的增加,减少了土壤有机碳库中总有机碳的数量和重组有机碳的比例,增加了微生物量碳、可溶性有机碳、易氧化有机碳和轻组有机碳的比例,而且也增加了土壤中速效养分的含量。(3)通过相关分析、一级动力学单指数模型和一级动力学双指数衰减模型拟合表明,高品质的外源碳输入促进土壤有机碳的矿化,而低品质的外源碳输入有利于土壤有机碳的稳定。综上,随着草本植物入侵程度的加重,苔原土壤有机碳库变得越来越不稳定,而当未来草本植物完全代替灌木植物时,苔原土壤有机碳库又会变得相对稳定一些。 相似文献
15.
Housen Chu Johan F. Gottgens Jiquan Chen Ge Sun Ankur R. Desai Zutao Ouyang Changliang Shao Kevin Czajkowski 《Global Change Biology》2015,21(3):1165-1181
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years. 相似文献
16.
JEFFREY PARR LEIGH SULLIVAN BIHUA CHEN GONGFU YE WEIPENG ZHENG 《Global Change Biology》2010,16(10):2661-2667
The rates of carbon bio‐sequestration within silica phytoliths of the leaf litter of 10 economically important bamboo species indicates that (a) there is considerable variation in the content of carbon occluded within the phytoliths (PhytOC) of the leaves between different bamboo species, (b) this variation does not appear to be directly related to the quantity of silica in the plant but rather the efficiency of carbon encapsulation by the silica. The PhytOC content of the species under the experimental conditions ranged from 1.6% to 4% of the leaf silica weight. The potential phytolith carbon bio‐sequestration rates in the leaf‐litter component for the bamboos ranged up to 0.7 tonnes of carbon dioxide (CO2) equivalents (t‐e‐CO2) ha?1 yr?1 for these species. Assuming a median phytolith carbon bio‐sequestration yield of 0.36 t‐e‐CO2 ha?1 yr?1, the global potential for bio‐sequestration via phytolith carbon (from bamboo and/or other similar grass crops) is estimated to be ~1.5 billion t‐e‐CO2 yr?1, equivalent to 11% of the current increase in atmospheric CO2. The data indicate that the management of vegetation such as bamboo forests to maximize the production of PhytOC has the potential to result in considerable quantities of securely bio‐sequestered carbon. 相似文献
17.
Céline Guéguen Laodong Guo Deli Wang Noriyuki Tanaka Chin-Chang Hung 《Biogeochemistry》2006,77(2):139-155
Monthly (or bi-weekly) water samples were collected from the Yukon River, one of the largest rivers in North America, at a
station near the US Geological Survey Stevens Village hydrological station, Alaska from May to September 2002, to examine
the quantity and quality of dissolved organic matter (DOM) and its seasonal variations. DOM was further size fractionated
into high molecular weight (HMW or colloidal, 1 kDa–0.45 μm) and low molecular weight (LMW, <1 kDa) fractions. Dissolved organic
carbon (DOC), colored dissolved organic matter (C-DOM) and total dissolved carbohydrate (TCHO) species were measured in the
size fractionated DOM samples. Concentrations of DOC were as high as 2830 μmol-C l−1 during the spring breakup in May and decreased significantly to 508–558 μmol-C l−1 during open-water season (June–September). Within the DOC pool, up to 85% was in the colloidal fraction (1 kDa–0.45 μm) in
early May. As DOC concentration decreased, this colloidal portion remained high (70–85% of the bulk DOC) throughout the sampling
season. Concentrations of TCHO, including monosaccharides (MCHO) and polysaccharides (PCHO), varied from 722 μmol-C l−1 in May to 129 μmol-C l−1 in September, which comprised a fairly constant portion of bulk DOC (24±2%). Within the TCHO pool, the MCHO/TCHO ratio consistently
increased from May to September. The C-DOM/DOM ratio and the size fractionated DOM increased from May to September, indicating
that DOM draining into the Yukon River contained increased amounts of humified materials, likely related to a greater soil
leaching efficiency in summer. The average composition of DOM was 76% pedogenic humic matter and 24% aquagenic CHO. Characteristics
of soil-derived humic substances and low chlorophyll-a concentrations support a dominance of terrestrial DOM in Yukon River waters. 相似文献
18.
Bacterioplankton and Bacteriobenthos of Three Floodplain Lakes in the Lower Course of the Amur River
The main structural and functional characteristics of bacterioplankton and bacteriobenthos of three lakes in the lower course of the Amur River are presented: the total number of bacteria (TNB), biomass, the numbers of bacteria of certain aerobic and anaerobic groups; the intensities of methanogenesis (MG), methane oxidation (MO), assimilation of 14C-compounds, sulfate reduction (SR); and gross estimate of organic matter decomposition (D). Depending on the reservoir type and the anthropogenic load, TNB constituted (2.27 to 16.1) × 106 cells/ml in water and (1.06 to 10.35) × 109cells/cm3 in sediments; MO was 0 to 0.28 ml CH4/(l day) in water and 0 to 8.4 ml CH4/(dm3 day) in sediments; MG in sediments was 0.001 to 40 ml CH4/(dm3 day); SR varied from 0.001 to 24.8 mg S/(dm3 day); D was 0.3 to 25 g C/(m2 day) in water and 0.2 to 4.9 g C/(m2 day) in sediments. The role of anaerobic microbial processes of organic matter decomposition was shown to increase with an increase in the anthropogenic load, attaining 95% of the total D in the ecosystem of an accumulating pond. 相似文献
19.
Carbon Dioxide Variation in a Hardwood Forest Stream: An Integrative Measure of Whole Catchment Soil Respiration 总被引:5,自引:3,他引:5
The concentration of CO2 in stream water is a product of not only instream metabolism but also upland, riparian, and groundwater processes and as
such can provide an integrative measure of whole catchment soil respiration. Using a 5-year dataset of pH, alkalinity, Ca2+, and Mg2+ in surface water of the West Fork of Walker Branch in eastern Tennessee in conjunction with a hydrological flowpath chemistry
model, we investigated how CO2 concentrations and respiration rates in stream, bedrock, and soil environments vary seasonally and interannually. Dissolved
inorganic carbon concentration was highest in summer and autumn (P < 0.05) although the proportion as free CO2 (pCO2) did not vary seasonally (P > 0.05). Over the 5 years, pCO2 was always supersaturated with respect to the atmosphere ranging from 374 to 3626 ppmv (1.0- to 10.1-fold greater than atmospheric
equilibrium), and CO2 evasion from the stream to the atmosphere ranged from 146 to 353 mmol m−2 d−1. Whereas pCO2 in surface water exhibited little intra-annual or interannual variation, distinct seasonal patterns in soil and bedrock pCO2 were revealed by the catchment CO2 model. Seasonally, soil pCO2 increased from a winter low of 8167 ppmv to a summer high of 27,068 ppmv. Driven by the seasonal variation in gas levels,
evasion of CO2 from soils to the atmosphere ranged from 83 mmol m−2 d−1 in winter to 287 mmol m−2 d−1 in summer. The seasonal variation in soil CO2 tracked soil temperature (r
2= 0.46, P < 0.001) and model-derived estimates of CO2 evasion rate from soils agreed with previously reported fluxes measured using chambers (Pearson correlation coefficient =
0.62, P < 0.05) supporting the model assumptions. Although rates of CO2 evasion were similar between the stream and soils, the overall rate of evasion from the channel was only 0.4% of the 70,752
mol/d that evaded from soils due to the vastly different areas of the two subsystems. Our model provides a means to assess
whole catchment CO2 dynamics from easily collected and measured stream-water samples and an approach to study catchment scale variation in soil
ecosystem respiration.
Received 24 July 1997; accepted 14 November 1997. 相似文献
20.
为了阐明河口潮汐湿地碳源温室气体排放的化学计量比特征,对闽江河口潮汐湿地二氧化碳和甲烷排放进行了测定与分析。结果表明:芦苇湿地和短叶茳芏湿地二氧化碳与甲烷排放均呈现正相关;涨潮前、涨落潮过程和落潮后芦苇湿地和短叶茳芏湿地CO2∶CH4月平均值分别为55.4和185.0,96.3和305.5,68.7和648.6,3个过程芦苇湿地和短叶茳芏湿地CO2∶CH4差异均不显著(P>0.05),2种植物湿地CO2∶CH4对潮汐的响应并不一致,但均在涨潮前表现为最低;涨潮前、涨落潮过程和落潮后均表现为芦苇湿地CO2∶CH4低于短叶茳芏湿地(P<0.05);河口潮汐湿地CO2∶CH4为空间变异性>时间变异性,潮汐、植物和温度均对CO2∶CH4的变化具有一定的调节作用。 相似文献