首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.

Background

A recently constructed cellulolytic Yarrowia lipolytica is able to grow efficiently on an industrial organosolv cellulose pulp, but shows limited ability to degrade crystalline cellulose. In this work, we have further engineered this strain, adding accessory proteins xylanase II (XYNII), lytic polysaccharide monooxygenase (LPMO), and swollenin (SWO) from Trichoderma reesei in order to enhance the degradation of recalcitrant substrate.

Results

The production of EG I was enhanced using a promoter engineering strategy. This provided a new cellulolytic Y. lipolytica strain, which compared to the parent strain, exhibited higher hydrolytic activity on different cellulosic substrates. Furthermore, three accessory proteins, TrXYNII, TrLPMOA and TrSWO, were individually expressed in cellulolytic and non-cellulolytic Y. lipolytica. The amount of rhTrXYNII and rhTrLPMOA secreted by non-cellulolytic Y. lipolytica in YTD medium during batch cultivation in flasks was approximately 62 and 52 mg/L, respectively. The purified rhTrXYNII showed a specific activity of 532 U/mg-protein on beechwood xylan, while rhTrLPMOA exhibited a specific activity of 14.4 U/g-protein when using the Amplex Red/horseradish peroxidase assay. Characterization of rhTrLPMOA revealed that this protein displays broad specificity against β-(1,4)-linked glucans, but is inactive on xylan. Further studies showed that the presence of TrLPMOA synergistically enhanced enzymatic hydrolysis of cellulose by cellulases, while TrSWO1 boosted cellulose hydrolysis only when it was applied before the action of cellulases. The presence of rTrXYNII enhanced enzymatic hydrolysis of an industrial cellulose pulp and of wheat straw. Co-expressing TrXYNII and TrLPMOA in cellulolytic Y. lipolytica with enhanced EG I production procured a novel engineered Y. lipolytica strain that displayed enhanced ability to degrade both amorphous (CIMV-cellulose) and recalcitrant crystalline cellulose in complex biomass (wheat straw) by 16 and 90%, respectively.

Conclusions

This study has provided a potent cellulose-degrading Y. lipolytica strain that co-expresses a core set of cellulolytic enzymes and some accessory proteins. Results reveal that the tuning of cellulase production and the production of accessory proteins leads to optimized performance. Accordingly, the beneficial effect of accessory proteins for cellulase-mediated degradation of cellulose is underlined, especially when crystalline cellulose and complex biomass are used as substrates. Findings specifically underline the benefits and specific properties of swollenin. Although in our study swollenin clearly promoted cellulase action, its use requires process redesign to accommodate its specific mode of action.
  相似文献   

3.
4.

Background and aims

Low nitrogen negatively affects soil fertility and plant productivity. Glucose-6-phosphate dehydrogenase (G6PDH) and Epichloë gansuensis endophytes are two factors that are associated with tolerance of Achnatherum inebrians to abiotic stress. However, the possibility that E. gansuensis interacts with G6PDH in enhancing low nitrogen tolerance of host grasses has not been examined.

Methods

A. inebrians plants with (E+) and without E. gansuensis (E?) were subjected to different nitrogen concentration treatments (0.1, 1, and 7.5 mM). After 90 days, physiological studies were carried out to investigate the participation of G6PDH in the adaption of host plants to low nitrogen availability.

Results

Low nitrogen retarded the growth of A. inebrians. E+ plants had higher total dry weight, chlorophyll a and b contents, net photosynthesis rate, G6PDH activity, and GSH content, while having lower plasma membrane (PM) NADPH oxidase activity, NADPH/NADP+ ratios, and MDA and H2O2 than in E? A. inebrians plants under low nitrogen concentration.

Conclusions

The presence of E. gansuensis played a key role in maintaining the growth of the A. inebrians plants under low nitrogen concentration by regulating G6PDH activity and the NADPH/NADP+ ratio and improving net photosynthesis rate.
  相似文献   

5.
6.

Introduction

Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages.

Objective

To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development.

Methods

The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. ‘Nike’) seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with 10?4 and 10?3 M 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4–6-day-old flax seedlings.

Results

ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC.

Conclusion

Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.
  相似文献   

7.

Background

Plant phospholipase D (PLD), which can hydrolyze membrane phospholipids to produce phosphatidic acid (PA), a secondary signaling molecule, has been proposed to function in diverse plant stress responses. Both PLD and PA play key roles in plant growth, development, and cellular processes. PLD was suggested to mediate the regulation of stomatal movements by abscisic acid (ABA) as a response to water deficit. In this research, we characterized the roles of the cucumber phospholipase D alpha gene (CsPLDα, GenBank accession number EF363796) in the growth and tolerance of transgenic tobacco (Nicotiana tabacum) to drought stress.

Results

The CsPLDα overexpression in tobacco lines correlated with the ABA synthesis and metabolism, regulated the rapid stomatal closure in drought stress, and reduced the water loss. The NtNCED1 expression levels in the transgenic lines and wild type (WT) were sharply up-regulated after 16?days of drought stress compared with those before treatment, and the expression level in the transgenic lines was significantly higher than that in the WT. The NtAOG expression level evidently improved after 8 and 16?days compared with that at 0?day of treatment and was significantly lower in the transgenic lines than in the WT. The ABA content in the transgenic lines was significantly higher than that in the WT. The CsPLDα overexpression could increase the osmolyte content and reduce the ion leakage. The proline, soluble sugar, and soluble protein contents significantly increased. By contrast, the electrolytic leakage and malondialdehyde accumulation in leaves significantly decreased. The shoot and root fresh and dry weights of the overexpression lines significantly increased. These results indicated that a significant correlation between CsPLDα overexpression and improved resistance to water deficit.

Conclusions

The plants with overexpressed CsPLDα exhibited lower water loss, higher leaf relative water content, and heavier fresh and dry matter accumulation than the WT. We proposed that CsPLDα was involved in the ABA-dependent pathway in mediating the stomatal closure and preventing the elevation of intracellular solute potential.
  相似文献   

8.
9.

Background

Lignocellulosic biomass will progressively become the main source of carbon for a number of products as the Earth’s oil reservoirs disappear. Technology for conversion of wood fiber into bioproducts (wood biorefining) continues to flourish, and access to reliable methods for monitoring modification of such fibers is becoming an important issue. Recently, we developed a simple, rapid approach for detecting four different types of polymer on the surface of wood fibers. Named fluorescent-tagged carbohydrate-binding module (FTCM), this method is based on the fluorescence signal from carbohydrate-binding modules-based probes designed to recognize specific polymers such as crystalline cellulose, amorphous cellulose, xylan, and mannan.

Results

Here we used FTCM to characterize pulps made from softwood and hardwood that were prepared using Kraft or chemical-thermo-mechanical pulping. Comparison of chemical analysis (NREL protocol) and FTCM revealed that FTCM results were consistent with chemical analysis of the hemicellulose composition of both hardwood and softwood samples. Kraft pulping increased the difference between softwood and hardwood surface mannans, and increased xylan exposure. This suggests that Kraft pulping leads to exposure of xylan after removal of both lignin and mannan. Impact of enzyme cocktails from Trichoderma reesei (Celluclast 1.5L) and from Aspergillus sp. (Carezyme 1000L) was investigated by analysis of hydrolyzed sugars and by FTCM. Both enzymes preparations released cellobiose and glucose from pulps, with the cocktail from Trichoderma being the most efficient. Enzymatic treatments were not as effective at converting chemical-thermomechanical pulps to simple sugars, regardless of wood type. FTCM revealed that amorphous cellulose was the primary target of either enzyme preparation, which resulted in a higher proportion of crystalline cellulose on the surface after enzymatic treatment. FTCM confirmed that enzymes from Aspergillus had little impact on exposed hemicelluloses, but that enzymes from the more aggressive Trichoderma cocktail reduced hemicelluloses at the surface.

Conclusions

Overall, this study indicates that treatment with enzymes from Trichoderma is appropriate for generating crystalline cellulose at fiber surface. Applications such as nanocellulose or composites requiring chemical resistance would benefit from this enzymatic treatment. The milder enzyme mixture from Aspergillus allowed for removal of amorphous cellulose while preserving hemicelluloses at fiber surface, which makes this treatment appropriate for new paper products where surface chemical responsiveness is required.
  相似文献   

10.

Background

The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol.

Results

We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization.

Conclusion

Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.
  相似文献   

11.
12.

Background

The genetic modification of plant cell walls has been considered to reduce lignocellulose recalcitrance in bioenergy crops. As a result, it is important to develop a precise and rapid assay for the major wall polymer features that affect biomass saccharification in a large population of transgenic plants. In this study, we collected a total of 246 transgenic rice plants that, respectively, over-expressed and RNAi silenced 12 genes of the OsGH9 and OsGH10 family that are closely associated with cellulose and hemicellulose modification. We examined the wall polymer features and biomass saccharification among 246 transgenic plants and one wild-type plant. The samples presented a normal distribution applicable for statistical analysis and NIRS modeling.

Results

Among the 246 transgenic rice plants, we determined largely varied wall polymer features and the biomass enzymatic saccharification after alkali pretreatment in rice straws, particularly for the fermentable hexoses, ranging from 52.8 to 95.9%. Correlation analysis indicated that crystalline cellulose and lignin levels negatively affected the hexose and total sugar yields released from pretreatment and enzymatic hydrolysis in the transgenic rice plants, whereas the arabinose levels and arabinose substitution degree (reverse xylose/arabinose ratio) exhibited positive impacts on the hexose and total sugars yields. Notably, near-infrared spectroscopy (NIRS) was applied to obtain ten equations for predicting biomass enzymatic saccharification and seven equations for distinguishing major wall polymer features. Most of the equations exhibited high R 2/R 2 cv/R 2 ev and RPD values for a perfect prediction capacity.

Conclusions

Due to large generated populations of transgenic rice lines, this study has not only examined the key wall polymer features that distinctively affect biomass enzymatic saccharification in rice but has also established optimal NIRS models for a rapid and precise screening of major wall polymer features and lignocellulose saccharification in biomass samples. Importantly, this study has briefly explored the potential roles of a total of 12 OsGH9 and OsGH10 genes in cellulose and hemicellulose modification and cell wall remodeling in transgenic rice lines. Hence, it provides a strategy for genetic modification of plant cell walls by expressing the desired OsGH9 and OsGH10 genes that could greatly improve biomass enzymatic digestibility in rice.
  相似文献   

13.
14.
15.
16.
17.

Background

Amyloid plaques and neurofibrillary tangles (NFTs) are the defining pathological hallmarks of Alzheimer’s disease (AD). Increasing the quantity of the O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification of nuclear and cytoplasmic proteins slows neurodegeneration and blocks the formation of NFTs in a tauopathy mouse model. It remains unknown, however, if O-GlcNAc can influence the formation of amyloid plaques in the presence of tau pathology.

Results

We treated double transgenic TAPP mice, which express both mutant human tau and amyloid precursor protein (APP), with a highly selective orally bioavailable inhibitor of the enzyme responsible for removing O-GlcNAc (OGA) to increase O-GlcNAc in the brain. We find that increased O-GlcNAc levels block cognitive decline in the TAPP mice and this effect parallels decreased β-amyloid peptide levels and decreased levels of amyloid plaques.

Conclusions

This study indicates that increased O-GlcNAc can influence β-amyloid pathology in the presence of tau pathology. The findings provide good support for OGA as a promising therapeutic target to alter disease progression in Alzheimer disease.
  相似文献   

18.

Introduction

The Deficiens Homologue 9-iaaM (DefH9-iaaM) gene is an ovule-specific auxin-synthesizing gene which is expressed specifically in placenta/ovules and promotes auxin-synthesis. It was introduced into the genome of two grape cultivars Thompson Seedless and Silcora and both transgenic cultivars had an increased number of berries per bunch.

Objectives

This study investigates the down-stream metabolic changes of Silcora and Thompson seedless grape cultivars when genetically modified through the insertion of the DefH9-iaaM gene into their genome.

Methods

The effects of the genetic modification upon the grape metabolome were evaluated through 1H-NMR and exploratory data analysis. Chemometric tools such as Interval Partial Least Squares regression and metabolite heatmaps were employed for scrutinizing the changes in the transgenic metabolome as compared to the wild type one.

Results

The results show that the pleiotropic effect on the grape metabolome as a function of the gene modifications is relatively low, although the insertion of the transgene caused a decrement in malic acid and proline and an increment in p-coumaric acid content. In addition, the concentration of malic acid was successfully correlated with the number of inserted copies of transgene in the Silcora cultivar, proving that the increased production of berries, promoted by the inserted gene, is achieved at the expense of a decrement in malic acid concentration.

Conclusion

NMR together with chemometrics is able to identify specific metabolites that were up- or down regulated in the genetically engineered plants allowing highlighting alterations in the down-stream metabolic pathways due to the up-stream genetic modifications.
  相似文献   

19.

Objectives

To improve the stability and sweetness of the sweet-tasting protein, monellin, by using site-directed mutagenesis and a Pichia pastoris expression system with a GAPDH constitutive promoter.

Results

Both wild-type and E2 N mutant of single-chain monellin gene were cloned into the PGAPZαA vector and expressed in Pichia pastoris. The majority of the secreted recombinant protein, at 0.15 g/l supernatant, was monellin. This was purified by Sephadex G50 chromatography. The sweetness threshold of wild-type and E2 N were 30 μg/ml and 20 μg/ml, respectively. Compared with the proteins expressed in Escherichia coli, the thermostability of both proteins was improved. The N-terminal sequence is determinative for the sweetness of the proteins expressed in yeast strains.

Conclusions

Site-directed mutagenesis, modification of the N-terminus of monellin, and without the need of methanol induction in P. pastoris expression system, indicate the possibility for large-scale production of this sweet-tasting protein.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号