首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Demographic parameters including operational sex ratio (OSR) and population density may influence the opportunity for, and strength of sexual selection. Traditionally, male-biased OSRs and high population densities have been thought to increase the opportunity for sexual selection on male sexual traits due to increased male competition for mates. Recent experimental evidence, however, suggests that male-biased OSRs might reduce the opportunity for sexual selection due to increased sexual coercion experienced by females. How OSR, density, and any resultant changes in the opportunity for sexual selection actually affect selection on male sexual traits is unclear. In this study, we independently manipulated OSR and density in the guppy (Poecilia reticulata) without altering the number of males present. We recorded male and female behavior and used DNA microsatellite data to assign paternity to offspring and estimate male reproductive success. We then used linear selection analyses to examine the effects of OSR and density on directional sexual selection on male behavioral and morphological traits. We found that females were pursued more by males in male-biased treatments, despite no change in individual male behavior. There were no differences in sexual behavior experienced by females or performed by males in relation to density. Neither OSR nor density significantly altered the opportunity for sexual selection. Also, Although there was significant multivariate linear selection operating on males, neither OSR nor density altered the pattern of sexual selection on male traits. Our results suggest that differences in either OSR or density (independent of the number of males present) are unlikely to alter directional evolutionary change in male sexual traits.  相似文献   

2.
Sexual selection can explain major micro‐ and macro‐evolutionary patterns. Much of current theory predicts that the strength of sexual selection (i) is driven by the relative abundance of males and females prepared to mate (i.e. the operational sex ratio, OSR) and (ii) can be generally estimated by calculating intra‐sexual variation in mating success (e.g. the opportunity for sexual selection, Is). Here, we demonstrate the problematic nature of these predictions. The OSR and Is only accurately predict sexual selection under a limited set of circumstances, and more specifically, only when mate monopolization is extremely strong. If mate monopolization is not strong, using OSR or Is as proxies or measures of sexual selection is expected to produce spurious results that lead to the false conclusion that sexual selection is strong when it is actually weak. These findings call into question the validity of empirical conclusions based on these measures of sexual selection.  相似文献   

3.
The expected strong directional selection for traits that increase a male's mating ability conflicts with the frequent observation that within species, males may show extreme variation in sexual traits. These male reproductive polymorphisms are usually attributed to direct male–male competition. It is currently unclear, however, how directional selection for sexually selected traits may convert into disruptive selection, and if female preference for elaborate traits may be an alternative mechanism driving the evolution of male polymorphism. Here, we explore this mechanism using the polyandric dwarf spider Oedothorax gibbosus as a model. We first show that males characterized by conspicuous cephalic structures serving as a nuptial feeding device (“gibbosus males”) significantly outperform other males in siring offspring of previously fertilized females. However, significant costs in terms of development time of gibbosus males open a mating niche for an alternative male type lacking expensive secondary sexual traits. These “tuberosus males” obtain virtually all fertilizations early in the breeding season. Individual‐based simulations demonstrate a hitherto unknown general principle, by which males selected for high investment to attract females suffer constrained mating opportunities. This creates a vacant mating niche of unmated females for noninvesting males and, consequently, disruptive selection on male secondary sexual traits.  相似文献   

4.
The operational sex ratio (OSR: sexually active males: receptive females) predicts the intensity of competition for mates. It is less clear, however, under what circumstances, the OSR predicts the strength of sexual selection – that is, the extent to which variation in mating success is attributable to traits that increase the bearer's attractiveness and/or fighting ability. To establish causality, experiments that manipulate the OSR are required. Furthermore, if it is possible to control for any OSR‐dependent changes in the chosen sex (e.g. changes in male courtship), we can directly test whether the OSR affects the behaviour of the choosing sex (e.g. female choice decisions). We conducted female mate choice experiments in the field using robotic models of male fiddler crabs (Uca mjoebergi). We used a novel design with two females tested sequentially per trial. As in nature, the choice of the first female to mate therefore affected the mates available to the next female. In general, we detected significant sexual selection due to female choice for ‘males’ with larger claws. Importantly, the strength of sexual selection did not vary across five different OSR/density treatments. However, as the OSR decreased (hence the number of available males declined), females chose the ‘males’ with the largest claws available significantly more often than expected by chance. Possible reasons for this mismatch between the expected and observed effects of the OSR on the strength of sexual selection are discussed.  相似文献   

5.
Sperm competition theory assumes a trade‐off between precopulatory traits that increase mating success and postcopulatory traits that increase fertilization success. Predictions for how sperm competition might affect male expenditure on these traits depend on the number of competing males, the advantage gained from expenditure on weapons, and the level of sperm competition. However, empirical tests of sperm competition theory rarely examine precopulatory male expenditure. We investigated how variation in male density affects precopulatory sexual selection on male weaponry and the level of sperm competition in the chorusing frog Crinia georgiana, where males use their arms as weapons in male–male combat. We measured body size and arm girth of 439 males, and recorded their mating success in the field. We found density‐dependent selection acting on arm girth. Arm girth was positively associated with mating success, but only at low population densities. Increased male density was associated with higher risk and intensity of sperm competition arising from multimale amplexus, and a reversal in the direction of selection on arm girth. Opposing patterns of pre‐ and postcopulatory selection may account for the negative covariation between arm girth and testes across populations of this species.  相似文献   

6.
Understanding how demographic processes influence mating systems is important to decode ecological influences on sexual selection in nature. We manipulated sex ratio and density in experimental populations of the sex‐role reversed pipefish Syngnathus typhle. We quantified sexual selection using the Bateman gradient (), the opportunity for selection (I), and sexual selection (Is), and the maximum standardized sexual selection differential (). We also measured selection on body length using standardized selection differentials (s′) and mating differentials (m′), and tested whether the observed I and Is differ from values obtained by simulating random mating. We found that I, Is, and , but not , were higher for females under female than male bias and the opposite for males, but density did not affect these measures. However, higher density decreased sexual selection (m′ but not s′) on female length, but selection on body length was not affected by sex ratio. Finally, Is but not I was higher than expected from random mating, and only for females under female bias. This study demonstrates that both sex ratio and density affect sexual selection and that disentangling interrelated demographic processes is essential to a more complete understanding of mating behavior and the evolution of mating systems.  相似文献   

7.
The maintenance of genetic variation in traits under strong sexual selection is a longstanding problem in evolutionary biology. The genic capture model proposes that this problem can be explained by the evolution of condition dependence in exaggerated male traits. We tested the predictions that condition dependence should be more pronounced in male sexual traits and that genetic variance in expression of these traits should increase under stress as among‐genotype variation in overall condition is exposed. Genetic variance in female and nonsexual traits should, by contrast, be similar across environments as a result of stabilizing selection on trait expression. The relationship between the degree of sexual dimorphism, condition dependence and additive genetic variance (Va) was assessed for two morphological traits (body size and relative fore femur width) affecting male mating success in the black scavenger fly Sepsis punctum (Diptera: Sepsidae) and for development time (a nonsexual trait often correlated with body size). We compared trait expression between the sexes for two cross‐continental populations that differ in degree of sexual dimorphism (Ottawa and Zurich). Condition dependence was indeed most pronounced in males of the strongly dimorphic Zurich population (males larger), and Va was similar for males and females unless the trait was strongly sex specific and condition dependent. Contrary to prediction, however, Va primarily increased under food limitation in both sexes, and genetic variance in fore femur width was low to nil, perhaps depleted by putatively strong sexual selection. Solely for body size of Zurich males, Va increased more in males than females at limited food, in accordance with the predictions of the genic capture model. Overall therefore, quantitative genetic evidence in support of the model was inconsistent and weak at best.  相似文献   

8.
Operational sex ratio (OSR), the ratio of sexually active males to fertilizable females in a population, plays a central role in the theory of mating systems by predicting that the intensity of male–male competition and the degree of sexual selection increases as the OSR becomes increasingly male biased. At high values of OSR, however, resource defence theory predicts the breakdown of territoriality and a shift towards scramble competition with a decrease in sexual selection. The direction that correlations between OSR and resource competition and variance in mating success will take depends on the biology of the species of interest. We investigated the effects of male population density and male‐biased operational sex ratio on male mating tactics shown by a freshwater fish, the European bitterling, Rhodeus sericeus . This species spawns inside living unioneid mussels. Large males defended territories, were aggressive towards conspecifics under equal sex ratios and monopolized pair spawnings with females. The mating tactic, however, changed at high male density where large males ceased to be territorial and instead competed with groups of smaller males to release sperm when females spawned. This change in male behaviour from pair to group spawning has two ramifications for sexual selection. The intensity of sexual selection and variance in male mating success decrease, and the form of sexual competition changes from resource‐ to sperm competition. Thus, the use of alternative mating tactics renders the OSR unable to predict the direction of resource competition and variance in male mating success at high densities.  相似文献   

9.
We investigated the importance of male song and morphological characters to the male mating success in a two-year field study in natural populations ofD. littoralis andD. montana. We compared the properties of mating flies with those of a random male sample taken at the same time and place. InD. littoralis the male's size had no effect on his mating success, while inD. montana small males had a mating advantage in the field during the first study year. Females preferred males with short sound pulses in both species. We also examined the relationship between male morphological and song characters and viability by collecting male flies in late summer and comparing the means of male characters to those of overwintered flies the next spring. InD. littoralis male size had no effect on overwinter survival. InD. montana large flies survived better than small flies. In both species the shifts in song characters during the winter dormancy were opposite to those caused by sexual selection. Our results, accordingly, imply a possible balance between the forces of sexual and natural selection, which act in opposing directions on attractive male traits.  相似文献   

10.
The contribution of extra‐pair paternity (EPP) to sexual selection has received considerable attention, particularly in socially monogamous species. However, the importance of EPP remains difficult to assess quantitatively, especially when many extra‐pair young have unknown sires. Here, we combine measurements of the opportunity for selection (I), the opportunity for sexual selection (IS), and the strength of selection on mating success (Bateman gradient, βSS) with a novel simulation of random mating tailored to the specific mating system of the blue tit (Cyanistes caeruleus). In a population where social polygyny and EPP are common, the opportunity for sexual selection was significantly stronger and Bateman gradients significantly steeper for resident males than for females. In general, success with the social mate(s) contributed most to variation in male reproductive success. Effects of EPP were small, but significantly higher than expected under random mating. We used sibship analysis to estimate the number of unknown sires in our population. Under the assumption that the unknown sires are nonbreeding males, EPP reduced the variance in and the strength of selection on mating success, a possibility that hitherto has not been considered.  相似文献   

11.
We compare morphological characteristics of male and female Barisia imbricata, Mexican alligator lizards, and find that mass, head length, coloration, incidence of scars from conspecifics, tail loss, and frequency of bearing the color/pattern of the opposite sex are all sexually dimorphic traits. Overall size (measured as snout–vent length), on the other hand, is not different between the two sexes. We use data on bite scar frequency and fecundity to evaluate competing hypotheses regarding the selective forces driving these patterns. We contend that sexual selection, acting through male‐male competition, may favor larger mass and head size in males, whereas large females are likely favored by natural selection for greater fecundity. In addition, the frequency of opposite‐sex patterning in males versus females may indicate that the costs of agonistic interactions among males are severe enough to allow for an alternative mating strategy. Finally, we discuss how sexual and natural selective forces may interact to drive or mask the evolution of sexually dimorphic traits.  相似文献   

12.
Identifying targets of selection is key to understanding the evolution of sexually selected behavioral and morphological traits. Many animals have coercive mating, yet little is known about whether and how mate choice operates when these are the dominant mating tactic. Here, we use multivariate selection analysis to examine the direction and shape of selection on male insemination success in the mosquitofish (Gambusia holbrooki). We found direct selection on only one of five measured traits, but correlational selection involving all five traits. Larger males with longer gonopodia and with intermediate sperm counts were more likely to inseminate females than smaller males with shorter gonopodia and extreme sperm counts. Our results highlight the need to investigate sexual selection using a multivariate framework even in species that lack complex sexual signals. Further, female choice appears to be important in driving the evolution of male sexual traits in this species where sexual coercion is the dominant mating tactic.  相似文献   

13.
The relationship between sexual and viability selection in females is necessarily different than that in males, as investment in sexual traits potentially comes at the expense of both fecundity and survival. Accordingly, females do not usually invest in sexually selected traits. However, direct benefits obtained from mating, such as nuptial gifts, may encourage competition among females and subsidize investment into sexually selected traits. We compared sexual and viability selection on female tree crickets Oecanthus nigricornis, a species where females mate frequently to obtain nuptial gifts and sexual selection on females is likely. If male choice determines female mating success in this species, we expect sexual selection for fecundity traits, as males of many species prefer more fecund females. Alternatively, intrasexual scramble or combat competition on females may select for larger jumping legs or wider heads (respectively). We estimated mating success in wild caught crickets using microsatellite analysis of stored sperm and estimated relative viability by comparing surviving female O. nigricornis to those captured by a common wasp predator. In support of the scramble competition hypothesis, we found sexual selection for females with larger hind legs and narrower heads. We also found stabilizing viability selection for intermediate head width and hind leg size. As predicted, traits under viability and sexual selection were very similar, and the direction of that selection was not opposing. However, because the shape of sexual and viability selection differs, these episodes of selection may favour slightly different trait sizes.  相似文献   

14.
Sexual size dimorphism (SSD) is often attributed to sexual selection, particularly when males are the larger sex. However, sexual selection favoring large males is common even in taxa where females are the larger sex, and is therefore not a sufficient explanation of patterns of SSD. As part of a more extensive study of the evolution of SSD in water striders (Heteroptera, Gerridae), we examine patterns of sexual selection and SSD in 12 populations of Aquarius remigis. We calculate univariate and multivariate selection gradients from samples of mating and single males, for two sexually dimorphic traits (total length and profemoral width) and two sexually monomorphic traits (mesofemoral length and wing form). The multivariate analyses reveal strong selection favoring larger males, in spite of the female-biased SSD for this trait, and weaker selection favoring aptery and reduced mesofemoral length. Selection is weakest on the most dimorphic trait, profemoral width, and is stabilizing rather than directional. The pattern of sexual selection on morphological traits is therefore not concordant with the pattern of SSD. The univariate selection gradients reveal little net selection (direct + indirect) on any of the traits, and suggest that evolution away from the plesiomorphic pattern of SSD is constrained by antagonistic patterns of selection acting on this suite of positively correlated morphological traits. We hypothesize that SSD in A. remigis is not in equilibrium, a hypothesis that is consistent with both theoretical models of the evolution of SSD and our previous studies of allometry for SSD. A negative interpopulation correlation between the intensity of sexual selection and the operational sex ratio supports the hypothesis that, as in several other water strider species, sexual selection in A. remigis occurs through generalized female reluctance rather than active female choice. The implications of this for patterns of sexual selection are discussed.  相似文献   

15.
Conventional sex roles imply caring females and competitive males. The evolution of sex role divergence is widely attributed to anisogamy initiating a self‐reinforcing process. The initial asymmetry in pre‐mating parental investment (eggs vs. sperm) is assumed to promote even greater divergence in post‐mating parental investment (parental care). But do we really understand the process? Trivers [Sexual Selection and the Descent of Man 1871–1971 (1972), Aldine Press, Chicago] introduced two arguments with a female and male perspective on whether to care for offspring that try to link pre‐mating and post‐mating investment. Here we review their merits and subsequent theoretical developments. The first argument is that females are more committed than males to providing care because they stand to lose a greater initial investment. This, however, commits the ‘Concorde Fallacy’ as optimal decisions should depend on future pay‐offs not past costs. Although the argument can be rephrased in terms of residual reproductive value when past investment affects future pay‐offs, it remains weak. The factors likely to change future pay‐offs seem to work against females providing more care than males. The second argument takes the reasonable premise that anisogamy produces a male‐biased operational sex ratio (OSR) leading to males competing for mates. Male care is then predicted to be less likely to evolve as it consumes resources that could otherwise be used to increase competitiveness. However, given each offspring has precisely two genetic parents (the Fisher condition), a biased OSR generates frequency‐dependent selection, analogous to Fisherian sex ratio selection, that favours increased parental investment by whichever sex faces more intense competition. Sex role divergence is therefore still an evolutionary conundrum. Here we review some possible solutions. Factors that promote conventional sex roles are sexual selection on males (but non‐random variance in male mating success must be high to override the Fisher condition), loss of paternity because of female multiple mating or group spawning and patterns of mortality that generate female‐biased adult sex ratios (ASR). We present an integrative model that shows how these factors interact to generate sex roles. We emphasize the need to distinguish between the ASR and the operational sex ratio (OSR). If mortality is higher when caring than competing this diminishes the likelihood of sex role divergence because this strongly limits the mating success of the earlier deserting sex. We illustrate this in a model where a change in relative mortality rates while caring and competing generates a shift from a mammalian type breeding system (female‐only care, male‐biased OSR and female‐biased ASR) to an avian type system (biparental care and a male‐biased OSR and ASR).  相似文献   

16.
17.
The strength of sexual selection may vary between species, among populations and within populations over time. While there is growing evidence that sexual selection may vary between years, less is known about variation in sexual selection within a season. Here, we investigate within‐season variation in sexual selection in male two‐spotted gobies (Gobiusculus flavescens). This marine fish experiences a seasonal change in the operational sex ratio from male‐ to female‐biased, resulting in a dramatic decrease in male mating competition over the breeding season. We therefore expected stronger sexual selection on males early in the season. We sampled nests and nest‐holding males early and late in the breeding season and used microsatellite markers to determine male mating and reproductive success. We first analysed sexual selection associated with the acquisition of nests by comparing nest‐holding males to population samples. Among nest‐holders, we calculated the potential strength of sexual selection and selection on phenotypic traits. We found remarkable within‐season variation in sexual selection. Selection on male body size related to nest acquisition changed from positive to negative over the season. The opportunity for sexual selection among nest‐holders was significantly greater early in the season rather than late in the season, partly due to more unmated males. Overall, our study documents a within‐season change in sexual selection that corresponds with a predictable change in the operational sex ratio. We suggest that many species may experience within‐season changes in sexual selection and that such dynamics are important for understanding how sexual selection operates in the wild.  相似文献   

18.
Previous univariate studies of the yellow dung fly (Scathophaga stercoraria) have demonstrated strong sexual selection, in terms of mating success, on male size (estimated as hind tibia length). To identify specific target(s) of selection on body size and possible conflicting selection pressures on particular body parts, two multivariate field studies of sexual selection were conducted. In one study using point samples from three populations, we assessed several morphological traits, including genital traits and measures of fluctuating asymmetry (FA) of all paired traits. There was sexual selection for large male size in general, confirming previous, univariate studies. With the possible exception of thorax width, which was selected in the opposite direction, no main target of selection was identified, as most morphological traits were highly correlated. There was no detectable sexual selection on the male external genital structures assessed. In a second study using multiple samples from one population, we included physiological measures of energy reserves (lipids, glucose and glycogen) known to affect mating success, in addition to trait size and FA of wings and legs. Inclusion of physiological traits is rare in phenomenological studies of selection. This study again confirmed the mating advantage of large males, and additionally showed independent positive influences of lipid and glucose but not glycogen levels. FA in paired traits generally did not affect male mating success, but was negatively correlated with energy reserves. Our study suggests that inclusion of physiological measures and genital traits in phenomenological studies of selection would be fruitful in other species.  相似文献   

19.
To investigate behavioral or morphological traits importantas mate choice cues, we measured selection differentials (s)as the covariances between each trait and male mating success,and directional selection gradients (J3) from multiple linearregression of the standardized traits on male mating success.Data from two leks in four consecutive years were included,and the annual data were analyzed separately. The main findingsare: (1) the distribution of male mating success proved to beless skewed than those found in many other lekking species,(2) only a few traits yielded significant selection gradients,(3) the importance of age on male mating success changed acrossyears, (4) females may use traits with a high variance as matechoice cues, and (5) individual males achieved similar matingsuccesses between years. Attendance and age were the traitsmost consistently correlated with male mating success, but notraits showed significant selection gradients in all years.Our results indicate that variable sexual selection pressuresexisted between years, but the high correlation found betweenthe mating success of individual males in successive seasonsalso indicates that permanent differences in male traits areimportant. Key words: lek, mate choice, sexual selection.  相似文献   

20.
What explains variation in the strength of sexual selection across species, populations or differences between the sexes? Here, we show that unifying two well‐known lines of thinking provides the necessary conceptual framework to account for variation in sexual selection. The Bateman gradient and the operational sex ratio (OSR) are incomplete in complementary ways: the former describes the fitness gain per mating and the latter the potential difficulty of achieving it. We combine this insight with an analysis of the scope for sexually selected traits to spread despite naturally selected costs. We explain why the OSR sometimes does not affect the strength of sexual selection. An explanation of sexual selection becomes more logical when a long ‘dry time’ (‘time out’, recovery after mating due to e.g. parental care) is understood to reduce the expected time to the next mating when in the mating pool (i.e. available to mate again). This implies weaker selection to shorten the wait. An integrative view of sexual selection combines an understanding of the origin of OSR biases with how they are reflected in the Bateman gradient, and how this can produce selection for mate acquisition traits despite naturally selected costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号