首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Wei J  Wang L  Zhao J  Li C  Ge F  Kang L 《The New phytologist》2011,189(2):557-567
Recent studies on plants genetically modified in jasmonic acid (JA) signalling support the hypothesis that the jasmonate family of oxylipins plays an important role in mediating direct and indirect plant defences. However, the interaction of two modes of defence in tritrophic systems is largely unknown. In this study, we examined the preference and performance of a herbivorous leafminer (Liriomyza huidobrensis) and its parasitic wasp (Opius dissitus) on three tomato genotypes: a wild-type (WT) plant, a JA biosynthesis (spr2) mutant, and a JA-overexpression 35S::prosys plant. Their proteinase inhibitor production and volatile emission were used as direct and indirect defence factors to evaluate the responses of leafminers and parasitoids. Here, we show that although spr2 mutant plants are compromised in direct defence against the larval leafminers and in attracting parasitoids, they are less attractive to adult flies compared with WT plants. Moreover, in comparison to other genotypes, the 35S::prosys plant displays greater direct and constitutive indirect defences, but reduced success of parasitism by parasitoids. Taken together, these results suggest that there are distinguished ecological trade-offs between JA-dependent direct and indirect defences in genetically modified plants whose fitness should be assessed in tritrophic systems and under natural conditions.  相似文献   

2.
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect‐responsive genes after challenge with caterpillars, suggesting that egg‐derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA‐deficient mutant sid2‐1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross‐talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg‐induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.  相似文献   

3.
While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C18 fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence‐related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10‐day‐old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60‐fold increase in JA, a 30‐fold increase in SA and a hypersensitive‐like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10‐day‐old hosts, but both did in 20‐day‐old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid‐insensitive1 (jai1) ], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivore‐ and pathogen‐induced responses.  相似文献   

4.
Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid (JA) and salicylic acid (SA), the pathways downstream of JA and SA are unknown. Use of Arabidopsis provides a unique possibility to study signal transduction by use of signalling mutants, which so far has not been exploited in studies on indirect plant defence. In the present study it was demonstrated that jar1‐1 and npr1‐1 mutants are not affected in caterpillar (Pieris rapae)‐induced attraction of the parasitoid Cotesia rubecula. Both JAR1 and NPR1 (also known as NIM1) are involved in signalling downstream of JA in induced defence against pathogens such as induced systemic resistance (ISR). NPR1 is also involved in signalling downstream of SA in defence against pathogens such as systemic acquired resistance (SAR). These results demonstrate that signalling downstream of JA and SA differs between induced indirect defence against herbivores and defence against pathogens such as SAR and ISR. Furthermore, it was demonstrated that herbivore‐derived elicitors are involved in induced attraction of the parasitoid Cotesia rubecula  相似文献   

5.
1. Foliar trichomes clearly reduce chewing damage and efficiency of movement by some insect herbivores, but the effect of trichomes on insect oviposition is less well characterised. Trichomes are likely to have particularly strong, negative effects on species that require secure attachment of the egg to the leaf epidermis for successful transition to the feeding stage – a group that includes many leaf mining insects. 2. One such species, Micrurapteryx salicifoliella, must initially enter leaf cells directly from an egg adhered to the cuticle, but later instars can move between leaves and initiate new mines from the leaf exterior. 3. Natural patterns of occurrence by M. salicifoliella were quantified on 10 sympatric Salix species varying in trichome expression to test whether trichomes were associated with reduced oviposition, larval survival and leaf damage. 4. Mean egg density and leaf mining damage were negatively related to mean trichome density across Salix species. Survival of M. salicifoliella from egg to pupa was positively related to trichome density, suggesting that initiation of new mines by late‐instar larvae was not adversely affected by trichomes. There was no evidence that trichomes benefited leaf miner larvae indirectly by decreasing density‐dependent mortality; rather, the positive relationship between trichome density and larval survival may reflect less effective chemical defence by Salix species expressing high trichome density. 5. The results suggest that foliar trichomes serve as an effective defence against M. salicifoliella by deterring oviposition, but do not reduce the survivorship of those individuals that successfully transition from egg to larva.  相似文献   

6.
As a consequence of membrane lipid peroxidation, foliar defense compounds are changed by elevated ozone (O3), which in turn affects the palatability and performance of insect herbivores. The induced defense of two tomato [Solanum esculentum L. (Solanaceae)] genotypes, namely jasmonic acid (JA) pathway‐deficient mutant spr2 and its wild‐type control, was studied in response to cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), as well as the digestive adaptation of these insects under elevated O3 in open‐top field chambers. Our data indicated that elevated O3 increased foliar JA and salicylic acid (SA) levels simultaneously and up‐regulated proteinase inhibitors (PIs) and lipoxidase activities in wild‐type plants, regardless of H. armigera infestation. In contrast, only the O3+H. armigera treatment increased free SA levels in spr2 plants, but did not affect JA level or PI activities. Additionally, the lower activity of midgut digestive enzymes, including active alkaline trypsin‐like enzyme and chymotrypsin‐like enzyme, was observed in the midgut of cotton bollworms after they consumed wild‐type plants treated for 2 h with elevated O3. With temporary increases at 8 h, all four digestive enzymes of interest in the insect midgut dropped when they were fed with wild‐type plants under elevated O3 treatment. Increases in atmospheric O3 are thought to increase JA signaling and consequently reduce the activities of midgut digestive enzymes in H. armigera, therefore enhancing plant resistance against insect herbivores.  相似文献   

7.
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants.  相似文献   

8.
Beneficial soil‐borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col‐0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant‐mediated interaction between the non‐pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore‐induced plant volatiles. The volatile blend from rhizobacteria‐treated aphid‐infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid‐infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore‐induced volatiles and parasitoid response to aphid‐infested plants is lost in an Arabidopsis mutant (aos/dde2‐2) that is impaired in jasmonic acid production. By modifying the blend of herbivore‐induced plant volatiles that depend on the jasmonic acid‐signalling pathway, root‐colonizing microbes interfere with the attraction of parasitoids of leaf herbivores.  相似文献   

9.
Indirect plant defence mechanisms enhance the effectiveness of natural enemies of herbivores. Herbivore‐induced plant volatiles (HIPVs) attract the parasitoids of insect herbivores as shown both in numerous choice tests conducted under laboratory conditions and in relatively few common‐garden setups in agro‐ecosystems. However, the importance of this indirect defence trait at higher levels of biological organization has yet to be investigated through natural field experiments. Here, we report a field experiment of larval parasitism of two cyclic geometrid defoliators in herbivore‐damaged and fairly intact mountain birch Betula pubescens ssp. czerepanovii under natural conditions. Parasitism rates in larvae of the autumnal (Epirrita autumnata) and winter moth (Operophtera brumata) exposed for 30 h on defoliated trees were more than twice as high as those on control trees. This finding indicates that hymenopteran parasitoids were attracted to previously defoliated trees by some cues from the host plants, HIPVs being the most likely candidates. The third trophic level should thus be considered in natural plant herbivore interactions. Furthermore, parasitoids and food resources are key factors in the population regulation of forest insect pests, and indirect plant defences could be important in their interactions. Our research also emphasizes the quality of control treatments in field experiments, since immediate plant responses easily obscure the results as soon as control trees become infested by herbivorous insects.  相似文献   

10.
Tomato plants release volatile organic compounds (VOCs) following insect or mechanical damage. In this study, the constitutive and wound-induced emission levels of VOCs in suppressor of prosystemin-mediated responses2 (spr2) mutant plants, compromised in linolenic acid (LA) and jasmonic acid (JA) synthesis, and in 35S::prosystemin (35S::prosys) plants, having upregulated direct defence responses, were compared. The spr2 mutants produced constitutively lower levels of VOCs, which were nonetheless increased in response to (a)biotic damage, although at lower levels than wild-type (Wt) and 35S::prosys plants. No significant differences in VOC emissions were detected between the latter two genotypes, thereby suggesting that systemin does not regulate indirect defence responses, whereas differences in fatty acid composition in spr2 plants led to the predominant emission of saturated C6 volatiles in response to wounding. The expression of 1-deoxy-D-xylulose 5-phosphate synthase (DXS2), a key gene involved in VOC synthesis in the chloroplast, was only upregulated in Manduca sexta L.-damaged Wt and 35S::prosys plants. However, its expression was restored in spr2 plants by exogenous LA or JA, suggesting that abated VOC emissions in spr2 plants are correlated with lowered DXS2 expression. Bioassays with two different insects showed that adult females significantly preferred spr2 plants, indicating that lowered levels of VOCs in tomato influence plant selection by insects during oviposition.  相似文献   

11.
1. Based on the slow‐growth high‐mortality (SGHM) hypothesis, which predicts that prolonged larval development increases mortality from their natural enemies, studies have often assumed that low quality of plants that slows larval development would function as a defence against insect herbivores. However, empirical support for the SGHM hypothesis has been limited, especially in natural and ecologically relevant contexts. 2. In a leafminer Amauromyza flavifrons Meigen (Agromyzidae, Diptera), the SGHM hypothesis was tested along with four other hypotheses (e.g. prey size, mine appearance, density‐dependent parasitism, and plant quality hypotheses) to control for spurious associations between development time and parasitism that are primarily driven by other larval traits. Two host plant species, Saponaria officinalis and Silene latifolia, were grown under varying nitrogen levels, and leafminers developing on these plants were exposed to, or protected from, a natural assembly of parasitoids across the entire course of larval development. 3. On both host plant species, leafminers that survived to an adult stage in the presence of parasitoids had a shorter development time than those in the absence of parasitoids, indicating that parasitoids disproportionately kill leafminers with longer larval development. The results provided concrete evidence for the SGHM hypothesis within the natural ecological context for these interacting species. Moreover, reduced plant quality was associated with higher larval mortality on Sa. officinalis only in the presence of parasitoids, suggesting that low quality could function as indirect plant resistance via SGHM under some tri‐trophic interactions.  相似文献   

12.
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore‐induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up‐regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.  相似文献   

13.
Plants employ a variety of defence mechanisms, some of which act directly by having a negative effect on herbivores and others that act indirectly by attracting natural enemies of herbivores. In this study we asked if a common jasmonate‐signalling pathway links the regulation of direct and indirect defences in plants. We examined the performance of herbivores (direct defence) and the attraction of natural enemies of herbivores (indirect defence) to wild‐type tomato plants and mutant plants that are deficient in the production of the signalling hormone jasmonic acid. Wild‐type plants supported lower survivorship of caterpillars compared with jasmonic acid‐deficient plants. Damaged wild‐type plants were more attractive to predaceous mites compared with undamaged wild‐type plants, whereas damaged jasmonate‐deficient plants were not more attractive to predators. Damaged wild‐type plants induced a greater production of volatile compounds (primarily the sesquiterpene β‐caryophyllene and the monoterpenes α‐pinene, β‐pinene, 2‐carene and β‐phellandrene) compared with damaged jasmonate‐deficient plants. Treating jasmonate‐deficient plants with exogenous jasmonic acid restored both the direct and indirect defence capabilities, demonstrating that jasmonic acid is an essential regulatory component for the expression of direct and indirect plant defence.  相似文献   

14.
In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell‐free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol–plant–pathogen interaction system. Two‐week‐old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell‐free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata‐Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS‐ and CF‐induced resistance was evaluated using JA‐ and SA‐impaired tomato lines. We observed that JA‐deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild‐type (WT) BGS‐treated tomato plants showed a higher JA level and significantly lower disease incidence. SA‐deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF‐treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA‐responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA‐inducible pathogenesis‐related protein 1 acidic (PR1a) gene was up‐regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato.  相似文献   

15.
1. Parasitoids are known to utilise learning of herbivore‐induced plant volatiles (HIPVs) when foraging for their herbivorous host. In natural situations these hosts share food plants with other, non‐suitable herbivores (non‐hosts). Simultaneous infestation of plants by hosts and non‐hosts has been found to result in induction of HIPVs that differ from host‐infested plants. Each non‐host herbivore may have different effects on HIPVs when sharing the food plant with hosts, and thus parasitoids may learn that plants with a specific non‐host herbivore also contain the host. 2. This study investigated the adaptive nature of learning by a foraging parasitoid that had acquired oviposition experience on a plant infested with both hosts and different non‐hosts in the laboratory and in semi‐field experiments. 3. In two‐choice preference tests, the parasitoid Cotesia glomerata shifted its preference towards HIPVs of a plant–host–non‐host complex previously associated with an oviposition experience. It could, indeed, learn that the presence of its host is associated with HIPVs induced by simultaneous feeding of its host Pieris brassicae and either the non‐host caterpillar Mamestra brassicae or the non‐host aphid Myzus persicae. However, the learned preference found in the laboratory did not translate into parasitisation preferences for hosts accompanying non‐host caterpillars or aphids in a semi‐field situation. 4. This paper discusses the importance of learning in parasitoid foraging, and debates why observed learned preferences for HIPVs in the laboratory may cancel out under some field experimental conditions.  相似文献   

16.
Herbivore-induced plant defences influence the behaviour of insects associated with the plant. For biting–chewing herbivores the octadecanoid signal-transduction pathway has been suggested to play a key role in induced plant defence. To test this hypothesis in our plant—herbivore—parasitoid tritrophic system, we used phenidone, an inhibitor of the enzyme lipoxygenase (LOX), that catalyses the initial step in the octadecanoid pathway. Phenidone treatment of Brussels sprouts plants reduced the accumulation of internal signalling compounds in the octadecanoid pathway downstream of the step catalysed by LOX, i.e. 12-oxo-phytodienoic acid (OPDA) and jasmonic acid. The attraction of Cotesia glomerata parasitoids to host-infested plants was significantly reduced by phenidone treatment. The three herbivores investigated, i.e. the specialists Plutella xylostella, Pieris brassicae and Pieris rapae, showed different oviposition preferences for intact and infested plants, and for two species their preference for either intact or infested plants was shown to be LOX dependent. Our results show that phenidone inhibits the LOX-dependent defence response of the plant and that this inhibition can influence the behaviour of members of the associated insect community.  相似文献   

17.
潜叶昆虫广泛分布于鳞翅目、双翅目、鞘翅目和膜翅目中,其幼虫潜入叶片内部生活和取食,是一类用于研究植物-昆虫-天敌种间关系和协同进化的重要模式生物。有些潜叶昆虫是重要农林害虫。相比外食性昆虫,在叶内取食的潜叶昆虫幼虫更易受到叶片物理性状的直接影响。叶片的着生位置、朝向、大小、颜色和表皮毛等直接决定潜叶虫成虫的取食和产卵选择,从而影响幼虫的空间分布和寄主适应。叶片的某些物理性状也会直接影响幼虫的取食行为、生长发育和被寄生率。研究叶片物理性状的防御作用以及潜叶昆虫对这些防御的适应,有助于了解潜叶昆虫-寄主植物的协同进化。另一方面,外界环境和遗传育种都有可能改变植物叶片的物理特性,而对潜叶害虫产生抗性,从而实现潜叶害虫的可持续生态控制。  相似文献   

18.
Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host‐searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA‐treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA‐treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect‐feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.  相似文献   

19.
Li C  Zhao J  Jiang H  Wu X  Sun J  Zhang C  Wang X  Lou Y  Li C 《Plant & cell physiology》2006,47(5):653-663
The systemic defense response of tomato plant in response to insect attack and wounding is regulated by the 18 amino acid peptide systemin and the phytohormone jasmonic acid (JA). Recent genetic analyses based mainly on spr (suppressors of prosystemin-mediated responses) mutant screens have led to the hypothesis that systemin acts at, or near, the site of wounding to amplify the production of JA, which in turn functions as a mobile signal to promote the systemic defense response. In order to identify more components involved in the systemin/JA-signaled defense response, we carried out a larger scale screen for new spr mutants in tomato. Here we describe the characterization of spr6, a mutant impaired in wound- and systemin-induced defense gene expression. Using a candidate gene approach based on genetic linkage, we demonstrate that spr6 is allelic to jai1-1, which is a loss-of-function allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1), an F-box protein that is required for JA-signaled processes in Arabidopsis. We show several aspects of the spr6 mutant phenotype distinct from that of jai1-1. First, the responsiveness of spr6 plants to exogenous JA shows a dosage dependency, i.e. it is more sensitive to JA than jai1-1 while less sensitive to JA than the wild-type. Secondly, unlike the sterile jai1-1, the spr6 plant displays normal fertility and seed set and thus can be maintained as a pure line and does not require selection. Therefore, spr6 provides a valuable tool, which can complement the limitations of jai1-1, to study JA signaling in tomato. The gene identification process of Spr6 we described herein represents an example showing the convenience of a candidate gene approach, based on genetic linkage, to identify gene functions of genetic loci defined by tomato wound response mutants.  相似文献   

20.
Theory predicts that trade-offs between resistance to herbivory and other traits positively affecting fitness can maintain genetic variation in resistance within plant populations. In the perennial herb Arabidopsis lyrata, trichome production is a resistance trait that exhibits both qualitative and quantitative variation. Using a paternal half-sib design, we conducted two greenhouse experiments to ask whether trichomes confer resistance to oviposition and leaf herbivory by the specialist moth Plutella xylostella, and to examine potential genetic constraints on evolution of increased resistance and trichome density. In addition, we examined whether trichome production is induced by insect herbivory. We found strong positive genetic and phenotypic correlations between leaf trichome density and resistance to leaf herbivory, demonstrating that the production of leaf trichomes increases resistance to leaf damage by P. xylostella. Also resistance to oviposition tended to increase with increasing leaf trichome density, but genetic and phenotypic correlations were not statistically significant. Trichome density and resistance to leaf herbivory were negatively correlated genetically with plant size in the absence of herbivores, but not in the presence of herbivores. There was no evidence of increased trichome production after leaf damage by P. xylostella. The results suggest that trichome production and resistance to leaf herbivory are associated with a cost and that the direction of selection on resistance and trichome density depends on the intensity of herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号