首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Diatoms are significant organisms for primary production in the earth''s aquatic environment. Hence, their dynamics are an important focus area in current studies. Viruses are a great concern as potential factors of diatom mortality, along with other physical, chemical, and biological factors. We isolated and characterized a new diatom virus (Csp07DNAV) that lyses the marine planktonic diatom Chaetoceros sp. strain SS628-11. This paper examines the physiological, morphological, and genomic characteristics of Csp07DNAV. The virus was isolated from a surface water sample that was collected at Hiroshima Bay, Japan. It was icosahedral, had a diameter of 34 nm, and accumulated in the nuclei of host cells. Rod-shaped virus particles also coexisted in the host nuclei. The latent period and burst size were estimated to be <12 h and 29 infectious units per host cell, respectively. Csp07DNAV had a closed circular single-stranded DNA genome (5,552 nucleotides), which included a double-stranded region and 3 open reading frames. The monophyly of Csp07DNAV and other Bacilladnavirus group single-stranded DNA viruses was supported by phylogenetic analysis that was based on the amino acid sequence of each virus protein. On the basis of these results, we considered Csp07DNAV to be a new member of the genus Bacilladnavirus.  相似文献   

3.
RNA silencing is an ancient regulatory mechanism operating in all eukaryotic cells. In fungi, it was first discovered in Neurospora crassa, although its potential as a defence mechanism against mycoviruses was first reported in Cryphonectria parasitica and, later, in several fungal species. There is little evidence of the antiviral potential of RNA silencing in the phytopathogenic species of the fungal genus Botrytis. Moreover, little is known about the RNA silencing components in these fungi, although the analysis of public genome databases identified two Dicer‐like genes in B. cinerea, as in most of the ascomycetes sequenced to date. In this work, we used deep sequencing to study the virus‐derived small RNA (vsiRNA) populations from different mycoviruses infecting field isolates of Botrytis spp. The mycoviruses under study belong to different genera and species, and have different types of genome [double‐stranded RNA (dsRNA), (+)single‐stranded RNA (ssRNA) and (–)ssRNA]. In general, vsiRNAs derived from mycoviruses are mostly of 21, 20 and 22 nucleotides in length, possess sense or antisense orientation, either in a similar ratio or with a predominance of sense polarity depending on the virus species, have predominantly U at their 5′ end, and are unevenly distributed along the viral genome, showing conspicuous hotspots of vsiRNA accumulation. These characteristics reveal striking similarities with vsiRNAs produced by plant viruses, suggesting similar pathways of viral targeting in plants and fungi. We have shown that the fungal RNA silencing machinery acts against the mycoviruses used in this work in a similar manner independent of their viral or fungal origin.  相似文献   

4.
A novel negative‐stranded (ns) RNA virus associated with a severe citrus disease reported more than 80 years ago has been identified. Transmission electron microscopy showed that this novel virus, tentatively named citrus concave gum‐associated virus, is flexuous and non‐enveloped. Notwithstanding, its two genomic RNAs share structural features with members of the genus Phlebovirus, which are enveloped arthropod‐transmitted viruses infecting mammals, and with a group of still unclassified phlebo‐like viruses mainly infecting arthropods. CCGaV genomic RNAs code for an RNA‐dependent RNA polymerase, a nucleocapsid protein and a putative movement protein showing structural and phylogenetic relationships with phlebo‐like viruses, phleboviruses and the unrelated ophioviruses, respectively, thus providing intriguing evidence of a modular genome evolution. Phylogenetic reconstructions identified an invertebrate‐restricted virus as the most likely ancestor of this virus, revealing that its adaptation to plants was independent from and possibly predated that of the other nsRNA plant viruses. These data are consistent with an evolutionary scenario in which trans‐kingdom adaptation occurred several times during the history of nsRNA viruses and followed different evolutionary pathways, in which genomic RNA segments were gained or lost. The need to create a new genus for this bipartite nsRNA virus and the impact of the rapid and specific detection methods developed here on citrus sanitation and certification are also discussed.  相似文献   

5.
HaRNAV, a novel virus that infects the toxic bloom‐forming alga Heterosigma akashiwo (Hada) Hada ex Hada et Chihara, was characterized based on morphology, pathology, nucleic acid type, structural proteins, and the range of host strains that it infects. HaRNAV is a 25‐nm single‐stranded RNA (ssRNA) virus with a genome size of approximately 9100 nucleotides. This is the first report of an ssRNA virus that causes lysis of a phytoplankton species. The virus particle is sensitive to chloroform and contains at least five structural proteins ranging in apparent size from 24 to 34 kDa. HaRNAV infection causes swelling of the endoplasmic reticulum and progeny virus particles assemble in the cytoplasm of the host, frequently in crystalline arrays. The infectivity of HaRNAV was tested against 15 strains of H. akashiwo isolated from Japanese waters, the Northeast Pacific, and the Northwest Atlantic. HaRNAV caused lysis of three strains from the Northeast Pacific and two strains from Japan but none from the Northwest Atlantic. The characterization of HaRNAV demonstrates that HaRNAV is a novel type of phytoplankton virus but has some similarities with plant viruses belonging to the Sequiviridae and to other known ssRNA viruses. Further genomic analysis, however, is necessary to determine any phylogenetic relationships. The discovery of HaRNAV emphasizes the diversity of H. akashiwo viral pathogens and, more importantly, algal–virus pathogens and the complexity of virus–host interactions in the environment.  相似文献   

6.
Diatoms are one of the most significant primary producers in the ocean, and the importance of viruses as a potential source of mortality for diatoms has recently been recognized. Thus far, eight different diatom viruses infecting the genera Rhizosolenia and Chaetoceros have been isolated and characterized to different extents. We report the isolation of a novel diatom virus (ClorDNAV), which causes the lysis of the bloom-forming species Chaetoceros lorenzianus, and show its physiological, morphological, and genomic characteristics. The free virion was estimated to be ~34 nm in diameter. The arrangement of virus particles appearing in cross-section was basically a random aggregation in the nucleus. Occasionally, distinctive formations such as a ring-like array composed of 9 or 10 spherical virions or a centipede-like array composed of rod-shaped particles were also observed. The latent period and the burst size were estimated to be <48 h and 2.2 × 10(4) infectious units per host cell, respectively. ClorDNAV harbors a covalently closed circular single-stranded DNA (ssDNA) genome (5,813 nucleotides [nt]) that includes a partially double-stranded DNA region (979 nt). At least three major open reading frames were identified; one showed a high similarity to putative replicase-related proteins of the other ssDNA diatom viruses, Chaetoceros salsugineum DNA virus (previously reported as CsNIV) and Chaetoceros tenuissimus DNA virus. ClorDNAV is the third member of the closed circular ssDNA diatom virus group, the genus Bacilladnavirus.  相似文献   

7.
By integrating next‐generation sequencing (NGS), bioinformatics, electron microscopy and conventional molecular biology tools, a new virus infecting kiwifruit vines has been identified and characterized. Being associated with double‐membrane‐bound bodies in infected tissues and having a genome composed of RNA segments, each one containing a single open reading frame in negative polarity, this virus shows the typical features of members of the genus Emaravirus. Five genomic RNA segments were identified. Additional molecular signatures in the viral RNAs and in the proteins they encode, together with data from phylogenetic analyses, support the proposal of creating a new species in the genus Emaravirus to classify the novel virus, which is tentatively named Actinidia chlorotic ringspot‐associated virus (AcCRaV). Bioassays showed that AcCRaV is mechanically transmissible to Nicotiana benthamiana plants which, in turn, may develop chlorotic spots and ringspots. Field surveys disclosed the presence of AcCRaV in four different species of kiwifruit vines in five different provinces of central and western China, and support the association of the novel virus with symptoms of leaf chlorotic ringspots in Actinidia. Data on the molecular features of small RNAs of 21–24 nucleotides, derived from AcCRaV RNAs targeted by host RNA silencing mechanisms, are also reported, and possible molecular pathways involved in their biogenesis are discussed.  相似文献   

8.
Diatoms are very significant primary producers in the world''s oceans. Various environmental factors affect the depletion of diatom populations. The importance of viruses as a potential mortality source has recently been recognized. We isolated and characterized a new diatom virus (Chaetoceros socialis f. radians RNA virus [CsfrRNAV]) causing the lysis of the bloom-forming species Chaetoceros socialis Lauder f. radians (Schütt) Proschkina-Lavrenko. The virus infectious to C. socialis f. radians was isolated from water samples collected in Hiroshima Bay. Here we show the physiology, morphology, and genome characteristics of the virus clone. Virions were 22 nm in diameter and accumulated in the cytoplasm of the host cells. The latent period and the burst size were estimated to be <48 h and 66 infectious units per host cell, respectively. CsfrRNAV harbors a single-stranded RNA (ssRNA) genome and encodes at least three polypeptides of 32.0, 28.5, and 25.0 kDa. Sequencing analysis shows the length of the genome is 9,467 bases, excluding a poly(A) tail. The monophyly of CsfrRNAV and other diatom-infecting RNA viruses, Rhizosolenia setigera RNA virus and Chaetoceros tenuissimus RNA virus, was strongly supported by phylogenetic analysis based on the amino acid sequence of the RNA-dependent RNA polymerase domains. This suggested a new ssRNA virus family, Bacillariornaviridae. This discovery of CsfrRNAV may aid in further understanding the ecological dynamics of the C. socialis f. radians population in nature and the relationships between ssRNA diatom viruses and their hosts.Diatoms (Bacillariophyceae) account for a large part of the marine primary production, up to 35% in oligotrophic oceans and 75% in nutrient-rich systems (13). They play an important role in various marine systems as a food source for zooplankton and animal larvae. Moreover, diatoms are the primary oxygen producers for the atmosphere (25). Therefore, to understand diatom dynamics in nature is significant for biogeochemical science and fisheries studies. Phytoplankton population dynamics are the result of reproduction and losses. Losses include grazing, sinking, and natural mortality. Since the early 1990s, the importance of viruses infectious to microalgae is recognized as one of the principal causes of phytoplankton mortality. The direct evidence for the existence of diatom viruses was reported recently in 2004 (11). Since the discovery of the first diatom virus, the isolation and characterization of new viruses have been conducted. As a result, several new diatom viruses infecting ecologically important diatom members have been successfully isolated and reported.The first diatom virus, Rhizosolenia setigera RNA virus (RsRNAV), is a small icosahedral virus (32 nm) with a single-stranded RNA (ssRNA) genome at 8,877 nucleotides (nt), excluding a poly(A) tail (11, 15). Thereafter, two Chaetoceros-infecting single-stranded DNA (ssDNA) viruses were isolated and characterized: Chaetoceros salsugineum nuclear inclusion virus (CsNIV), a small (38-nm) virus harboring a covalently closed circular ssDNA (6,000 nt) and a segment of linear ssDNA (997 nt) (12) (H. Mizumoto, unpublished data), and Chaetoceros debilis DNA virus, whose partial genome sequence is highly similar to that of CsNIV (22). The genome analyses of the two ssDNA viruses showed that they are distinctive from previously reported viruses. The isolation of Chaetoceros nuclear inclusion virus (CspNIV) infectious to Chaetoceros cf. gracilis (a Chaetoceros sp. that looks like Chaetoceros gracilis) was also reported (1); however, its nucleic acid type is still unknown. A recent study reports the isolation of the second ssRNA diatom virus infectious to Chaetoceros tenuissimus (CtenRNAV). A phylogenetic analysis showed a putative RNA-dependent RNA polymerase (RdRp) domain from a genome sequence of CtenRNAV is highly similar to RsRNAV but less similar to other marine stramenopile organism viruses (16): Schizochytrium single-stranded RNA virus (SssRNAV) infecting a fungoid protist Aurantiochytrium sp. (formerly Schizochytrium sp.) (19) and Heterosigma akashiwo RNA virus (HaRNAV; Marnaviridae) infecting the bloom-forming raphidophyte H. akashiwo (7, 8). The ssRNA diatom viruses are unlike other known viruses at the family level. These reports suggest that the diatom viruses are an exclusively unique group distinct from previously described viruses where further study of diatom virus biology is significant to understand diatom ecology.Here we report the isolation and characterization of a new ssRNA virus (Chaetoceros socialis f. radians RNA virus [CsfrRNAV]) infecting Chaetoceros socialis Lauder f. radians (Schütt) Proschkina-Lavrenko, one of the dominant phytoplankton species in the marine environments in especially productive areas during spring blooms; e.g., in the North Water polynya, the maximum concentration of C. socialis was as high as 3.0 × 104 cells ml−1 (2). Here, we also propose a new ssRNA virus family (Bacillariornaviridae), composed of three diatom-infecting ssRNA viruses based on phylogenetic analysis using the RdRp domain and other genomic characters.  相似文献   

9.
Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7‐1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane‐containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNAMet gene. The virion contains a discontinuous, circular, double‐stranded DNA genome of 16 992 bp, in which both nicks and single‐stranded regions are present preceded by a ‘GCCCA’ motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2‐like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene.  相似文献   

10.
Grapevine virus A (GVA), a member of the genus Vitivirus which belongs to the family Flexiviridae, has a single‐stranded RNA genome of about 7.4 kb that comprises five open reading frames (ORFs). ORF5 encodes a small 10‐kDa protein (p10), which is believed to interact with nucleic acids and to suppress the plant's RNA‐ silencing response. We obtained molecular and biological data indicating that ORF5‐encoded product, specifically its N‐terminus, affects the appearance of symptoms in Nicotiana benthamiana plants. The ORF5‐encoded products of the severe GR5 and the mild GTR1‐1 isolates were found to affect RNA silencing similarly in mesophyll cells of N. benthamiana, despite being involved in different expressions of symptoms on this host.  相似文献   

11.
Electron microscopy of leaf samples displaying streak symptoms from enset (Ensete ventricosum), a banana‐like plant widely cultivated in Ethiopia, showed the presence of bacilliform shaped virions as known for badnaviruses. DNA extracts subjected to rolling circle amplification (RCA), polymerase chain reaction (PCR) and cloning and sequence analysis revealed that the virus has a circular double‐stranded DNA genome of 7,163 nucleotides encoding predicted proteins of 21.5 kDa, 14.5 kDa and 202.5 kDa, a genome organization known for badnaviruses. The virus is phylogenetically most closely related to Sugarcane bacilliform Guadeloupe D virus with a nucleotide sequence identity of 77.2% at the conserved RT/RNase‐H region and 73.6% for the whole genome. Following the current species demarcation criteria, the virus should be considered as an isolate of a new species in the genus Badnavirus for which the name Enset leaf streak virus (ELSV) is suggested. Leaf samples from enset and banana were screened using virus‐specific primers, and ELSV was detected in six of 40 enset but not found in any of 61 banana samples. On the other hand, Banana streak OL virus (BSOLV) was detected from the majority (60%) of symptomatic banana samples but not from enset samples. This paper reports the first full‐genome sequence of a putative new badnavirus species infecting plants in the genus Ensete. In addition, this is the first report of the occurrence of BSOLV in Ethiopia.  相似文献   

12.
Recent studies have suggested that diatom viruses are an important factor affecting diatom population dynamics, which in turn are important in considering marine primary productivity. The marine planktonic diatom Chaetoceros tenuissimus Meunier is a cosmopolitan species and often causes blooms off the western coast of Japan. To date, two viruses, C. tenuissimus DNA virus (CtenDNAV) type I and CtenRNAV type I, have been identified that potentially affect C. tenuissimus population dynamics in the natural environment. In this study, we successfully isolated and characterized two additional novel viruses (CtenDNAV type II and CtenRNAV type II). This paper reports the basic characteristics of these new viruses isolated from surface water or sediment from the Hiroshima Bay, Japan. The physiological and morphological characteristics of the two new viruses were similar to those of the previously isolated viruses. However, the amino acid sequences of the structural proteins of CtenDNAV type II and CtenRNAV type II were clearly distinct from those of both type I viruses, with identity scores of 38.3% and 27.6%, respectively. Our results suggest that at least four genetically distinct viruses sharing the same diatom host are present in western Japan and affect the population dynamics of C. tenuissimus. Moreover, the result that CtenRNAV type II lysed multiple diatom species indicates that RNA viruses may affect various diatom populations in the natural environment.  相似文献   

13.
Acidianus Filamentous Virus 1 (AFV1), isolated from acidic hot springs, is an enveloped lipid‐containing archaeal filamentous virus with a linear double‐stranded DNA genome. It infects Acidianus, which is a hyperthermostable archaea growing at 85°C and acidic pHs, below pH 3. AFV1‐99, a protein of 99 amino acids of unknown function, has homologues in the archaeal virus families Lipothrixviridae and Rudiviridae. We determined the crystal structure of AFV1‐99 at 2.05 Å resolution. AFV1‐99 has a new fold, is hyperthermostable (up to 95°C) and resists to extreme pH (between pH 0 and 11) and to the combination of high temperature (95°C) and low pH (pH 0). It possesses characteristics of hyperthermostable proteins, such as a high content of charged residues.  相似文献   

14.
15.
RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus (SPCFV) for their abilities to suppress RNA silencing using a green fluorescent protein (GFP)‐based transient expression assay in Nicotiana benthamiana line 16c plants. Our results showed that a putative nucleotide‐binding protein (NaBp), but not other proteins encoded by the virus, could efficiently suppress local and systemic RNA silencing induced by either sense or double‐stranded RNA (dsRNA) molecules. Deletion mutation analysis of NaBp demonstrated that the basic motif (an arginine‐rich region) was critical for its RNA silencing suppression activity. Using confocal laser scanning microscopy imaging of transfected protoplasts expressing NaBp fused to GFP, we showed that NaBp accumulated predominantly in the nucleus. Mutational analysis of NaBp demonstrated that the basic motif represented part of the nuclear localization signal. In addition, we demonstrated that the basic motif in NaBp was a pathogenicity determinant in the Potato virus X (PVX) heterogeneous system. Overall, our results demonstrate that the basic motif of SPCFV NaBp plays a critical role in RNA silencing suppression, nuclear localization and viral pathogenesis.  相似文献   

16.
Tomato apex necrosis virus (ToANV, species Tomato marchitez virus, genus Torradovirus, family Secoviridae) causes a severe tomato disease in Mexico. One distinctive feature of torradoviruses compared with other members of the family Secoviridae is the presence of an additional open reading frame (ORF) in genomic RNA2 (denominated RNA2‐ORF1), located upstream of ORF2. RNA2‐ORF2 encodes a polyprotein that is processed into a putative movement protein and three capsid proteins (CPs). The RNA2‐ORF1 protein has homologues only amongst other torradoviruses and, so far, no function has been associated with it. We used recombinant and mutant ToANV clones to investigate the role of the RNA2‐ORF1 protein in various aspects of the virus infection cycle. The lack of a functional RNA2‐ORF1 resulted in an inability to systemically infect Nicotiana benthamiana and tomato plants, but both positive‐ and negative‐strand RNA1 and RNA2 accumulated locally in agroinfiltrated areas in N. benthamiana plants, indicating that the RNA2‐ORF1 mutants were replication competent. Furthermore, a mutant with a deletion in RNA2‐ORF1 was competent for virion formation and cell‐to‐cell movement in the cells immediately surrounding the initial infection site. However, immunological detection of the ToANV CPs in the agroinfiltrated areas showed that this mutant was not detected in the sieve elements even if the surrounding parenchymatic cells were ToANV positive, suggesting a role for the RNA2‐ORF1 protein in processes occurring prior to phloem uploading, including efficient spread in inoculated leaves.  相似文献   

17.
Plants use a variety of small peptides for cell to cell communication during growth and development. Leguminous plants are characterized by their ability to develop nitrogen‐fixing nodules via an interaction with symbiotic bacteria. During nodule organogenesis, several so‐called nodulin genes are induced, including large families that encode small peptides. Using a three‐hybrid approach in yeast cells, we identified two new small nodulins, MtSNARP1 and MtSNARP2 (for small nodulin acidic RNA‐binding protein), which interact with the RNA of MtENOD40, an early induced nodulin gene showing conserved RNA secondary structures. The SNARPs are acidic peptides showing single‐stranded RNA‐binding activity in vitro and are encoded by a small gene family in Medicago truncatula. These peptides exhibit two new conserved motifs and a putative signal peptide that redirects a GFP fusion to the endoplasmic reticulum both in protoplasts and during symbiosis, suggesting they are secreted. MtSNARP2 is expressed in the differentiating region of the nodule together with several early nodulin genes. MtSNARP2 RNA interference (RNAi) transgenic roots showed aberrant early senescent nodules where differentiated bacteroids degenerate rapidly. Hence, a functional symbiotic interaction may be regulated by secreted RNA‐binding peptides.  相似文献   

18.
Diatoms are single‐celled microalgae that possess a nanostructured, porous biosilica shell called a frustule. This study characterized the micro‐photoluminescence (μ‐PL) emission of single living cells of the photosynthetic marine diatom Thalassiosira pseudonana in response to UV laser irradiation at 325 nm using a confocal Raman microscope. The photoluminescence (PL) spectrum had two primary peaks, one centered at 500–510 nm, which was attributed to the frustule biosilica, and a second peak at 680 nm, which was attributed to auto‐fluorescence of photosynthetic pigments. The portion of the μ‐PL emission spectrum associated with biosilica frustule in the single living diatom cell was similar to that from single biosilica frustules isolated from these diatom cells. The PL emission by the biosilica frustule in the living cell emerged only after cells were cultivated to silicon depletion. The discovery of the discovery of PL emission by the frustule biosilica within a single living diatom itself, not just its isolated frustule, opens up future possibilities for living biosensor applications, where the interaction of diatom cells with other molecules can be probed by μ‐PL spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Chondrus crispus Stackhouse (Gigartinales) is a red seaweed found on North Atlantic rocky shores. Electrophoresis of RNA extracts showed a prominent band with a size of around 6,000 bp. Sequencing of the band revealed several sequences with similarity to totiviruses, double‐stranded RNA viruses that normally infect fungi. This virus‐like entity was named C. crispus virus (CcV). It should probably be regarded as an extreme viral quasispecies or a mutant swarm since low identity (<65%) was found between sequences. Totiviruses typically code for two genes: one capsid gene (gag) and one RNA‐dependent RNA polymerase gene (pol) with a pseudoknot structure between the genes. Both the genes and the intergenic structures were found in the CcV sequences. A nonidentical gag gene was also found in the nuclear genome of C. crispus, with associated expressed sequence tags (EST) and upstream regulatory features. The gene was presumably horizontally transferred from the virus to the alga. Similar dsRNA bands were seen in extracts from different life cycle stages of C. crispus and from all geographic locations tested. In addition, similar bands were also observed in RNA extractions from other red algae; however, the significance of this apparently widespread phenomenon is unknown. Neither phenotype caused by the infection nor any virus particles or capsid proteins were identified; thus, the presence of viral particles has not been validated. These findings increase the known host range of totiviruses to include marine red algae.  相似文献   

20.
Bacteriophages (phages) belonging to the family Podoviridae genus N4‐like viruses have been used as therapeutic agent in phage therapy against Pseudomonas aeruginosa infections. P. aeruginosa phage KPP21 was isolated in Japan, and phylogenetically investigated the phages belonging to this viral genus. Morphological and genetic analyses confirmed that phage KPP21 belongs to the family Podoviridae genus N4‐like viruses. Moreover, phylogenetic analyses based on putative DNA polymerase and major virion protein showed that P. aeruginosa phages belonging to the genus N4‐like viruses are separated into two lineages and that phage KPP21 is in the same clade as phage LUZ7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号