首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land use effects on terrestrial carbon sources and sinks   总被引:3,自引:0,他引:3  
Current and past land use practices are critical in determining the distribution and size of global terrestrial carbon (C) sources and sinks. Althoughfossil fuel emissions dominate the anthropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropogenic emissions in a number of tropical regions of Asia. The size of the emission flux owing to land use change is still the biggest uncertainty in the global C budget. The Intergovernmental Panel on Climate Change (IPCC) reported a flux term of 1.7 PgC@a-1 for 1990-1995 but more recent estimates suggest the magnitude of this source may be only of 0.96 PgC@a-1 for the 1990s. In addition, current and past land use practices are now thought to contribute to a large degree to the northern hemisphere terrestrial sink, and are the dominant driver for some regional sinks. However, mechanisms other than land use change need to be invoked in order to explain the inferred C sink in the tropics. Potential candidates are the carbon dioxide (CO2) fertilization and climate change; fertilization due to nitrogen (N) deposition is believed to be small or nil. Although the potential for managing C sinks is limited, improved land use management and new land uses such as reforestation and biomass fuel cropping, can further enhance current terrestrial C sinks. Best management practices in agriculture alone could sequester 0.4-0.8 PgC per year in soils if implemented globally. New methodologies to ensure verification and permanency of C sequestration need to be developed.  相似文献   

2.
To meet the increasing food and biofuel demand, the Midwestern United States has become one of the most intensively human‐disturbed hotspots, characterized by widespread cropland expansion and various management practices. However, the role of human activities in the carbon (C) cycling across managed landscape remains far from certain. In this study, based on state‐ and national census, field experiments, and model simulation, we comprehensively examined long‐term carbon storage change in response to land use and cover change (LUCC) and agricultural management in the Midwest from 1850 to 2015. We also quantified estimation uncertainties related to key parameter values. Model estimation showed LUCC led to a reduction of 1.35 Pg (with a range of 1.3–1.4 Pg) in vegetation C pool of the Midwest, yet agricultural management barely affected vegetation C change. In comparison, LUCC reduced SOC by 4.5 Pg (3.1 to 6.2 Pg), while agricultural management practices increased SOC stock by 0.9 Pg. Moreover, we found 45% of the study area was characterized by continuously decreasing SOC caused by LUCC, and SOC in 13% and 31% of the area was fully and partially recovered, respectively, since 1850. Agricultural management was estimated to increase the area of full recovery and partial recovery by 8.5% and 1.1%. Our results imply that LUCC plays an essential role in regional C balance, and more importantly, sustainable land management can be beneficial for strengthening C sequestration of the agroecosystems in the Midwestern US, which may serve as an important contributor to C sinks in the US.  相似文献   

3.
Current and past land use practices are critical in determining the distribution and sizeof global terrestrial carbon (C) sources and sinks. Although fossil fuel emissions dominate the an-thropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropo-genic emissions in a number of tropical regions of Asia. The size of the emission flux owing to landuse change is still the biggest uncertainty in the global C budget. The Intergovernmental Panel on Climate Change (IPCC) reported a flux term of 1.7 PgC·a~(-1) for 1990-1995 but more recent es-timates suggest the magnitude of this source may be only of 0.96 PgC·a~(-1) for the 1990s. In add-ition, current and past land use practices are now thought to contribute to a large degree to the northern hemisphere terrestrial sink, and are the dominant driver for some regional sinks. However,mechanisms other than land use change need to be invoked in order to explain the inferred C sink in the tropics. Potential candidates are the carbon dioxide (CO_2) fertilization and climate change;fertilization due to nitrogen (N) deposition is believed to be small or nil. Although the potential formanaging C sinks is limited, improved land use management and new land uses such as refores-tation and biomass fuel cropping, can further enhance current terrestrial C sinks. Best manage-ment practices in agriculture alone could sequester 0.4-0.8 PgC per year in soils if implemented globally. New methodologies to ensure verification and permanency of C sequestration need to be developed.  相似文献   

4.
We model the carbon balance of European croplands between 1901 and 2000 in response to land use and management changes. The process‐based ORCHIDEE‐STICS model is applied here in a spatially explicit framework. We reconstructed land cover changes, together with an idealized history of agro‐technology. These management parameters include the treatment of straw and stubble residues, application of mineral fertilizers, improvement of cultivar species and tillage. The model is integrated for wheat and maize during the period 1901–2000 forced by climate each 1/2‐hour, and by atmospheric CO2, land cover change and agro‐technology each year. Several tests are performed to identify the most sensitive agro‐technological parameters that control the net biome productivity (NBP) in the 1990s, with NBP equaling for croplands the soil C balance. The current NBP is a small sink of 0.16 t C ha?1 yr?1. The value of NBP per unit area reflects past and current management, and to a minor extent the shrinking areas of arable land consecutive to abandonment during the 20th Century. The uncertainty associated with NBP is large, with a 1‐sigma error of 0.18 t C ha?1 yr?1 obtained from a qualitative, but comprehensive budget of various error terms. The NBP uncertainty is dominated by unknown historical agro‐technology changes (47%) and model structure (27%), with error in climate forcing playing a minor role. A major improvement to the framework would consist in using a larger number of representative crops. The uncertainty of historical land‐use change derived from three different reconstructions, has a surprisingly small effect on NBP (0.01 t C ha?1 yr?1) because cropland area remained stable during the past 20 years in all the tested land use forcing datasets. Regional cross‐validation of modeled NBP against soil C inventory measurements shows that our results are consistent with observations, within the uncertainties of both inventories and model. Our estimation of cropland NBP is however likely to be biased towards a sink, given that inventory data from different regions consistently indicate a small source whereas we model a small sink.  相似文献   

5.
The net flux of CO2 exchanged with the atmosphere following grassland‐related land‐use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired‐sites to quantify temporal SOC changes after grassland‐related LUC. In order to discriminate between SOC losses from the initial ecosystem and gains from the secondary one, the post‐LUC time series of SOC data was combined with satellite‐based net primary production observations as a proxy of carbon input to the soil. Globally, land conversion from either cropland or forest into grassland leads to SOC accumulation; the reverse shows net SOC loss. The SOC response curves vary between different regions. Conversion of cropland to managed grassland results in more SOC accumulation than natural grassland recovery from abandoned cropland. We did not consider the biophysical variables (e.g., climate conditions and soil properties) when fitting the SOC turnover rate into the observation data but analyzed the relationships between the fitted turnover rate and these variables. The SOC turnover rate is significantly correlated with temperature and precipitation (p < 0.05), but not with the clay fraction of soils (p > 0.05). Comparing our results with predictions from bookkeeping models, we found that bookkeeping models overestimate by 56% of the long‐term (100 years horizon) cumulative SOC emissions for grassland‐related LUC types in tropical and temperate regions since 2000. We also tested the spatial representativeness of our data set and calculated SOC response curves using the representative subset of sites in each region. Our study provides new insight into the impact grassland‐related LUC on the global carbon budget and sheds light on the potential of grassland conservation for climate mitigation.  相似文献   

6.
Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio‐economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700–2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (<5.5 Pg C) and a more heterogeneous pattern of source and sink regions. This suggests substantial sequestration potential in regrowing forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization.  相似文献   

7.
Accelerated terrestrial ecosystem carbon turnover and its drivers   总被引:1,自引:0,他引:1  
The terrestrial carbon cycle has been strongly influenced by human‐induced CO2 increase, climate change, and land use change since the industrial revolution. These changes alter the carbon balance of ecosystems through changes in vegetation productivity and ecosystem carbon turnover time (τeco). Even though numerous studies have drawn an increasingly clear picture of global vegetation productivity changes, global changes in τeco are still unknown. In this study, we analyzed the changes of τeco between the 1860s and the 2000s and their drivers, based on theory of dynamic carbon cycle in non‐steady state and process‐based ecosystem model. Results indicate that τeco has been reduced (i.e., carbon turnover has accelerated) by 13.5% from the 1860s (74 years) to the 2000s (64 years), with reductions of 1 year of carbon residence times in vegetation (rveg) and of 9 years in soil (rsoil). Additionally, the acceleration of τeco was examined at biome scale and grid scale. Among different driving processes, land use change and climate change were found to be the major drivers of turnover acceleration. These findings imply that carbon fixed by plant photosynthesis is being lost from ecosystems to the atmosphere more quickly over time, with important implications for the climate‐carbon cycle feedbacks.  相似文献   

8.
As a carbon dioxide removal measure, the Norwegian government is currently considering a policy of large‐scale planting of spruce (Picea abies (L) H. Karst) on lands in various states of natural transition to a forest dominated by deciduous broadleaved tree species. Given the aspiration to bring emissions on balance with removals in the latter half of the 21st century in effort to limit the global mean temperature rise to “well below” 2°C, the effectiveness of such a policy is unclear given relatively low spruce growth rates in the region. Further convoluting the picture is the magnitude and relevance of surface albedo changes linked to such projects, which typically counteract the benefits of an enhanced forest CO2 sink in high‐latitude regions. Here, we carry out a rigorous empirically based assessment of the terrestrial carbon dioxide removal (tCDR) potential of large‐scale spruce planting in Norway, taking into account transient developments in both terrestrial carbon sinks and surface albedo over the 21st century and beyond. We find that surface albedo changes would likely play a negligible role in counteracting tCDR, yet given low forest growth rates in the region, notable tCDR benefits from such projects would not be realized until the second half of the 21st century, with maximum benefits occurring even later around 2150. We estimate Norway's total accumulated tCDR potential at 2100 and 2150 (including surface albedo changes) to be 447 (±240) and 852 (±295) Mt CO2‐eq. at mean net present values of US$ 12 (±3) and US$ 13 (±2) per ton CDR, respectively. For perspective, the accumulated tCDR potential at 2100 represents around 8 years of Norway's total current annual production‐based (i.e., territorial) CO2‐eq. emissions.  相似文献   

9.
土地利用碳排放效应及其低碳管理研究进展   总被引:7,自引:0,他引:7  
韩骥  周翔  象伟宁 《生态学报》2016,36(4):1152-1161
土地利用是造成全球温室气体排放量迅猛增长的重要因素,但由于土地利用的碳排放在时间和空间上受社会经济活动与自然过程的共同作用,相对自然生态系统碳排放的过程和机制更加复杂,因此,其研究也越来越多地受到包括学者、政府决策者、企业、非政府组织等利益相关者的关注,并被诸多能源与生态环境领域的国内外重大科学研究计划列为核心内容。通过对土地利用的直接和间接碳排放效应及其低碳管理的国内外研究进展进行综述,较全面地对上述研究中已取得的成果以及尚存在的不足与挑战进行了总结,并对未来研究应如何完善现有研究的不足提出了几点展望,以期为科学编制低碳目标导向的土地利用规划提供理论基础和实践管理经验,从而全面引导城市的低碳发展。  相似文献   

10.
Uncertainties in the 20th century carbon budget associated with the treatment of land use change (LUC) are assessed using the Canadian Centre for Climate Modelling and Analysis (CCCma) first‐generation Earth System Model (CanESM1). Eight coupled climate carbon cycle simulations are performed using different reconstructions of 1850–2000 land cover derived from historical information on changes in cropland and pasture area. The simulations provide estimates of the emissions associated with LUC, the relative contribution of changes in cropland and pasture to LUC emissions and the uncertainty associated with differences among historical data sets of crop area as well as in the manner in which the historical land cover data are constructed. The resulting estimates of the amount of biomass deforested over the 1850–2000 period range from 63 to 145 Pg C with cumulative implied LUC emissions ranging from 40 to 77 Pg C. These values of LUC emissions are considerably lower than Houghton's estimate of 156 Pg C. The year 2000 atmospheric CO2 concentration ranges between 371.1 ± 3.7 ppm depending on the data set used and the manner in which historical land cover is constructed. This compares to the observed value of 369.6 ppm at Mauna Loa and is 17.3 ± 6.3 ppm larger than for simulations without LUC. Although increases in cropland result in the expected increase in LUC emissions, changes in pasture area decrease these emissions because of carbon sequestration in soils.  相似文献   

11.
12.
城市碳代谢过程研究进展   总被引:3,自引:1,他引:2  
夏琳琳  张妍  李名镜 《生态学报》2017,37(12):4268-4277
碳代谢过程分析是城市代谢研究的重要环节,而通过土地利用/覆盖的空间调整优化城市碳代谢过程已成为区域可持续发展的关键。利用城市代谢思想,本文综述了城市碳代谢过程核算、碳代谢网络模拟、碳代谢过程与土地利用/覆盖变化关系分析、碳代谢空间格局演替等方面的内容,并指出了当前研究中存在着空间属性表达缺乏、核算/模拟结果较难直接应用于实践调控、自然和社会经济代谢过程难以并重考虑等问题。在此基础上,提出了此领域未来发展预期:(1)基于土地流转,将碳排放/碳吸收垂向流映射到碳存量变化的水平流,以"存量"变化推导出网络"流量"分布,实现节点、流互动关系的空间表达,构建时空维度碳代谢网络模型;(2)强调自然节点在城市碳代谢网络中的重要作用,形成社会经济节点与自然节点并重的生态网络模型,有效服务于城市规划及设计。  相似文献   

13.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

14.
基于土地利用/覆被变化的荒漠绿洲碳储量动态评估   总被引:2,自引:0,他引:2  
孔君洽  杨荣  苏永中  付志德 《生态学报》2018,38(21):7801-7812
以典型的荒漠绿洲区为研究对象,基于不同时期土地利用/覆被类型图,运用Bookkeeping模型,结合土壤、植被碳密度基础资料及调查数据,评估了近30年临泽绿洲土地利用/覆被变化特征及其对碳储量的影响。结果表明:(1)临泽荒漠绿洲区的土地利用/覆被变化特征主要表现为:居民及建设用地、耕地、林地呈增加趋势,增幅分别为90.2%、75%、46.5%;盐碱地、水体、沙地、荒漠草地则呈减少趋势,减幅分别为73.9%、67.8%、46.2%、5.5%。(2) 30 a耕地面积增加了269.38 km~2,其中耕地开垦面积为372.57 km~2,开垦主要来源于盐碱地、荒漠草地和沙地,分别占耕地开垦面积的24.7%、24.4%和21.05%。耕地转变为其他土地覆被类型的面积为103.19 km~2,转变后的主要去向分别是居民及建设用地、盐碱地和荒漠草地,分别占耕地转变为其他土地覆被类型面积的32.78%、17.8%和15.37%。(3)土地利用/覆被变化导致总碳储量增加5.89×10~5t,其中土壤碳储量增加量为4.02×10~5t,植被碳储量增加量为1.86×10~5t;耕地变化使碳储量增加4.91×10~5t,其中使碳储量增加的转变分别是荒漠草地-耕地、沙地-耕地、盐碱地-耕地、耕地-林地,相反的转变则使碳储量减少。总体来看,临泽荒漠绿洲土地利用/覆被面积和结构均发生了变化,耕地开垦为最主要的土地利用/覆被变化,土地利用/覆被变化导致碳储量总体呈增加趋势,耕地变化是影响碳储量变化的主要因素。  相似文献   

15.
Scenario‐based biodiversity modelling is a powerful approach to evaluate how possible future socio‐economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio‐economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc‐seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area‐weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (?0.02) than the regional rivalry and fossil‐fuelled development scenarios (?0.06 and ?0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub‐Saharan Africa. In some scenario‐region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.  相似文献   

16.
Carbon (C) emission and uptake due to land use and land cover change (LULCC) are the most uncertain term in the global carbon budget primarily due to limited LULCC data and inadequate model capability (e.g., underrepresented agricultural managements). We take the commonly used FAOSTAT‐based global Land Use Harmonization data (LUH2) and a new high‐resolution multisource harmonized national LULCC database (YLmap) to drive a land ecosystem model (DLEM) in the conterminous United States. We found that recent cropland abandonment and forest recovery may have been overestimated in the LUH2 data derived from national statistics, causing previously reported C emissions from land use have been underestimated due to the definition of cropland and aggregated LULCC signals at coarse resolution. This overestimation leads to a strong C sink (30.3 ± 2.5 Tg C/year) in model simulations driven by LUH2 in the United States during the 1980–2016 period, while we find a moderate C source (13.6 ± 3.5 Tg C/year) when using YLmap. This divergence implies that previous C budget analyses based on the global LUH2 dataset have underestimated C emission in the United States owing to the delineation of suitable cropland and aggregated land conversion signals at coarse resolution which YLmap overcomes. Thus, to obtain more accurate quantification of LULCC‐induced C emission and better serve global C budget accounting, it is urgently needed to develop fine‐scale country‐specific LULCC data to characterize the details of land conversion.  相似文献   

17.
Intergovernmental Panel on Climate Change (IPCC) Tier 1 methodologies commonly underpin project‐scale carbon accounting for changes in land use and management and are used in frameworks for Life Cycle Assessment and carbon footprinting of food and energy crops. These methodologies were intended for use at large spatial scales. This can introduce error in predictions at finer spatial scales. There is an urgent need for development and implementation of higher tier methodologies that can be applied at fine spatial scales (e.g. farm/project/plantation) for food and bioenergy crop greenhouse gas (GHG) accounting to facilitate decision making in the land‐based sectors. Higher tier methods have been defined by IPCC and must be well evaluated and operate across a range of domains (e.g. climate region, soil type, crop type, topography), and must account for land use transitions and management changes being implemented. Furthermore, the data required to calibrate and drive the models used at higher tiers need to be available and applicable at fine spatial resolution, covering the meteorological, soil, cropping system and management domains, with quantified uncertainties. Testing the reliability of the models will require data either from sites with repeated measurements or from chronosequences. We review current global capability for estimating changes in soil carbon at fine spatial scales and present a vision for a framework capable of quantifying land use change and management impacts on soil carbon, which could be used for addressing issues such as bioenergy and biofuel sustainability, food security, forest protection, and direct/indirect impacts of land use change. The aim of this framework is to provide a globally accepted standard of carbon measurement and modelling appropriate for GHG accounting that could be applied at project to national scales (allowing outputs to be scaled up to a country level), to address the impacts of land use and land management change on soil carbon.  相似文献   

18.
Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km2 of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experienced little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700–2005, or 13.4% of carbon losses in non‐PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001–2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large‐scale disturbances that would release large amounts of carbon in PAs.  相似文献   

19.
Large‐scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine‐scale processes including land use and land cover change into a large‐scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1‐km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.  相似文献   

20.
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m?2 yr?2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号