首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The evolution of parental care is beneficial if it facilitates offspring performance traits that are ultimately tied to offspring fitness. While this may seem self‐evident, the benefits of parental care have received relatively little theoretical exploration. Here, we develop a theoretical model that elucidates how parental care can affect offspring performance and which aspects of offspring performance (e.g., survival, development) are likely to be influenced by care. We begin by summarizing four general types of parental care benefits. Care can be beneficial if parents (1) increase offspring survival during the stage in which parents and offspring are associated, (2) improve offspring quality in a way that leads to increased offspring survival and/or reproduction in the future when parents are no longer associated with offspring, and/or (3) directly increase offspring reproductive success when parents and offspring remain associated into adulthood. We additionally suggest that parental control over offspring developmental rate might represent a substantial, yet underappreciated, benefit of care. We hypothesize that parents adjust the amount of time offspring spend in life‐history stages in response to expected offspring mortality, which in turn might increase overall offspring survival, and ultimately, fitness of parents and offspring. Using a theoretical evolutionary framework, we show that parental control over offspring developmental rate can represent a significant, or even the sole, benefit of care. Considering this benefit influences our general understanding of the evolution of care, as parental control over offspring developmental rate can increase the range of life‐history conditions (e.g., egg and juvenile mortalities) under which care can evolve.  相似文献   

2.
    
Sex differences in ageing and lifespan are ubiquitous in nature. The \"unguarded‐X” hypothesis (UXh) suggests they may be partly due to the expression of recessive mutations in the hemizygous sex chromosomes of the heterogametic sex, which could help explain sex‐specific ageing in a broad array of taxa. A prediction central to the UX hypothesis is that inbreeding will decrease the lifespan of the homogametic sex more than the heterogametic sex, because only in the former does inbreeding increase the expression of recessive deleterious mutations. In this study, we test this prediction by examining the effects of inbreeding on the lifespan and fitness of male and female Drosophila melanogaster across different social environments. We found that, across social environments, inbreeding resulted in a greater reduction of female than male lifespan, and that inbreeding effects on fitness did not seem to counterbalance sex‐specific effects on lifespan, suggesting the former are maladaptative. Inter‐ and intra‐sexual correlation analyses also allowed us to identify evidence of an underlying joint genetic architecture for inbreeding effects on lifespan. We discuss these results in light of the UXh and other alternative explanations, and suggest that more attention should be paid to the possibility that the “unguarded‐X” may play an important role in the evolution of sex‐specific lifespan.  相似文献   

3.
Inbreeding with close relatives and outbreeding with members of distant populations can both result in deleterious shifts in the means of fitness-related characters, most likely for very different reasons. Such processes often occur simultaneously and have important implications for the evolution of mating systems, dispersal strategies, and speciation. They are also relevant to the design of breeding strategies for captive populations of endangered species. A general expression is presented for the expected phenotype of an individual under the joint influence of inbreeding and crossbreeding. This expression is a simple function of the inbreeding coefficient, of source and hybridity indices of crossbreeding, and of specific forms of gene action. Application of the model may be of use in identifying the mechanistic bases for a number of evolutionary phenomena such as the shift from outbreeding enhancement to outbreeding depression that occurs with population divergence.  相似文献   

4.
Parental age at offspring conception often influences offspring longevity, but the mechanisms underlying this link are poorly understood. One mechanism that may be important is telomeres, highly conserved, repetitive sections of non-coding DNA that form protective caps at chromosome ends and are often positively associated with longevity. Here, the potential pathways by which the age of the parents at the time of conception may impact offspring telomeres are described first, including direct effects on parental gamete telomeres and indirect effects on offspring telomere loss during pre- or post-natal development. Then a surge of recent studies demonstrating the effects of parental age on offspring telomeres in diverse taxa are reviewed. In doing so, important areas for future research and experimental approaches that will enhance the understanding of how and when these effects likely occur are highlighted. It is concluded by considering the potential evolutionary consequences of parental age on offspring telomeres.  相似文献   

5.
Although exposure to stressors is known to increase disease susceptibility and accelerate ageing, evidence is accumulating that these effects can span more than one generation. Stressors experienced by parents have been reported to negatively influence the longevity of their offspring and even grand offspring. The mechanisms underlying these long-term, cross-generational effects are still poorly understood, but we argue here that telomere dynamics are likely to play an important role. In this review, we begin by surveying the current connections between stress and telomere dynamics. We then lay out the evidence that exposure to stressors in the parental generation influences telomere dynamics in offspring and potentially subsequent generations. We focus on evidence in mammalian and avian studies and highlight several promising areas where our understanding is incomplete and future investigations are critically needed. Understanding the mechanisms that link stress exposure across generations requires interdisciplinary studies and is essential to both the biomedical community seeking to understand how early adversity impacts health span and evolutionary ecologists interested in how changing environmental conditions are likely to influence age-structured population dynamics.  相似文献   

6.
    
Diet quality influences organismal fitness within and across generations.For herbivorous insects,the transgenerational effecets of diet remain relatively underexplored.Usinga3×3×2 factorial experiment,we evaluated how N enrichment in parental diets of Neolemd abbreviata(Larcordaire)(C oleoptera:Chrysomelidae),a biological control agent for Tradescantia fluminensis Vell.(Commelinaceae),may influence life history and performance of Fi and F2 offspring under reciprocal experiments.We found limited transgenerational effects of foliar nitrogen variability among life-history traits in both larvae and adults.Larval weight gain and mortality were responsive to parental diet contrary to feeding damage,pupal weight and duration taken to pupate.There were significant parental diet x test interactions in larval feeding damage,weight gain,pupal weight and time to pupation.Generally,offspring from parents under high N plants performed better even under low N test plants.Adult traits including oviposition selection,feeding weight and longevity did not respond to the efects of parental diet nor its interaction with test diet as was the case in the larval stage.However,the main efects of test diet were more important in determining adult performance in both generations suggesting limited sensitivity to parental diet in the adult stage.Our results show conflicting responses to parental diet between larvae and adults ofthe same generation among an insec species with both actively feeding larual and adult life stagee These tranegeneratinonal efferte,or lack thereof,may have implications on the field performance of N.abbrevita under heterogencous nutritional landscapes.  相似文献   

7.
Small populations of many plant species have been shown to exhibit ecological Allee effects. These effects are expected to be pronounced in plants which are obligate outcrossers and rely on pollinators which forage preferentially in larger populations with greater nectar availability. We examined the breeding and pollination systems, level of pollen limitation and seed production in populations of a threatened “ornithophilous” species, Aloe pruinosa. Experimental hand-pollinations showed that A. pruinosa is genetically self-incompatible and thus an obligate outcrosser. Experimental exclusion of birds from inflorescences did not affect seed production, suggesting that insects are effective pollinators. Supplemental hand-pollinations in several populations showed that seed production in A. pruinosa is not pollen limited. Further, there were no significant relationships between population size and any measure of reproductive success in this Aloe species. Small populations of A. pruinosa are thus viable in terms of pollination processes and should be protected from more direct threats, such as habitat alteration.  相似文献   

8.
9.
    
Life span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention. This hypothesis suggests that the heterogametic sex suffers a shortened life span because recessive deleterious alleles on its single X(Z) chromosome are expressed unconditionally. In Drosophila melanogaster, the X chromosome is unusually large (~20% of the genome), providing a powerful model for evaluating theories involving the X. Here, we test the unguarded X hypothesis by forcing D. melanogaster females from a laboratory population to express recessive X‐linked alleles to the same degree as males, using females exclusively made homozygous for the X chromosome. We find no evidence for reduced life span or egg‐to‐adult viability due to X homozygozity. In contrast, males and females homozygous for an autosome both suffer similar, significant reductions in those traits. The logic of the unguarded X hypothesis is indisputable, but our results suggest that the degree to which recessive deleterious X‐linked alleles depress performance in the heterogametic sex appears too small to explain general sex differences in life span.  相似文献   

10.
11.
Salmon have provided key insights into the relative influence of natural and sexual selection on major histocompatibility complex (MHC) variation. Natural selection on salmon MHC genes has been demonstrated in pathogen studies, and there is evidence of MHC-based mate choice (sexual selection). We tested whether parental MHC genes affect survivorship of juvenile Atlantic salmon (Salmo salar) by quantifying the influence of parental genome-wide relatedness and MHC genotype on survivorship to the swim-up stage. Thirteen microsatellite loci were used to estimate the influence of genome-wide relatedness between parents on offspring survivorship and MHC genotypes were determined by sequencing part of the class IIβ gene. Our results revealed no significant relationship between early offspring survivorship and genome-wide relatedness, predicted MHC heterozygosity, or MHC allelic similarity. Overall, our data are consistent with the contention that excess MHC heterozygosity in Atlantic salmon juveniles is due to sexual selection as well as differential survival of offspring due to MHC genotype.  相似文献   

12.
    
Parental age influences components of offspring fitness in many species. The ability to tolerate stress also affects fitness, but less is known regarding changes in offspring stress tolerance with increasing parental age, especially in plants. We examined first and fifth-born clonal offspring (using birth order as a proxy for parental age), and compared their fitness in several sub-lethal concentrations of salt (NaCl), to investigate the interactive effects of birth order and salt stress on the offspring of the aquatic plant Lemna minor L. We found that increasing salt concentration reduced reproduction particularly at early ages, which detrimentally affected fitness, as measured by the intrinsic rate of natural increase. Fifth offspring had greater fitness than first offspring, potentially due to the hump-shaped relationship between offspring fitness and birth order observed in other studies on Lemna, with fifth offspring near the peak of the hump. We found no interactive effect of birth order and salt concentration on offspring fitness; however, there were interactive effects on the time to first reproduction and the size of fronds. Specifically, first offspring exposed to increasing salt concentrations exhibited longer delays to first reproduction and grew to a greater size, while fifth offspring showed little change in either variable with increasing salt concentration. Thus, variation in birth order affected offspring response to salt stress, although not in terms of fitness. These results help illuminate factors impacting the age-specific strength of natural selection and stress responses, and may be environmentally relevant in the context of environmental salinization.  相似文献   

13.
Distortion of expected Mendelian segregation ratios, commonly observed in many plant taxa, has been detected in an experimental three-generation inbred pedigree of Populus founded by interspecific hybridization between P. trichocarpa and P. deltoides. An RFLP linkage map was constructed around a single locus showing severe skewing of segregation ratio against F2 trees carrying the P. trichocarpa allele in homozygous form. Several hypotheses for the mechanism of segregation distortion at this locus were tested, including directional chromosome loss, segregation of a pollen lethal allele, conflicts between genetic factors that isolate the parental species, and inbreeding depression as a result of genetic load. Breeding experiments to produce inbred and outcrossed progenies were combined with PCR-based detection of RFLPs to follow the fate of the deficient allele throughout embryo and seedling development. A recessive lethal allele, lth, inherited from the P. trichocarpa parent, was found to be tightly linked to the RFLP marker locus POP1054 and to cause embryo and seedling mortality. Heterozygotes (lth/+) appear to be phenotypically normal as embryos, seedlings, and young trees.Abbreviations RFLP restriction fragment length polymorphism - PCR polymerase chain reaction - STS sequence-tagged site - SDS sodium dodecyl sulfate  相似文献   

14.
Wild boar (Sus scrofa L.) were introduced in the island of Cyprus in 1990, when five animals were imported from Greece for game farming. In 1994, wild boars were illegally released in Lemesos (Limassol) Forest and in 1996 in the Troodos National Forest Park. Soon the population increased and dispersed throughout the park. In 1997, the government of Cyprus decided to eradicate wild boar because of the danger of transmitting diseases to livestock and to prevent possible environmental destruction. To control the wild boar, hunting was permitted and game wardens were instructed to eliminate the free-ranging animals. In 2004, no animals were observed in localities where they had been seen before. Surveys in September 2004 (Troodos National Park) and January/February 2005 (Troodos Forest, Pafos Forest, and Lemesos Forest) revealed no signs of recent wild boar presence. The reasons for the possible failure of wild boar to establish in Cyprus are discussed.  相似文献   

15.
The age-specific mortality curve for many species, including humans, is U-shaped: mortality declines with age in the developing cohort (ontogenescence) before increasing with age (senescence). The field of evolutionary demography has long focused on understanding the evolution of senescence while largely failing to address the evolution of ontogenescence. The current review is the first to gather the few available hypotheses addressing the evolution of ontogenescence, examine the basis and assumptions of each and ask what the phylogenetic extent of ontogenescence may be. Ontogenescence is among the most widespread of life-history traits, occurring in every population for which I have found sufficiently detailed data, in major groups throughout the eukaryotes, across many causes of death and many life-history types. Hypotheses seeking to explain ontogenescence include those based on kin selection, the acquisition of robustness, heterogeneous frailties and life-history optimization. I propose a further hypothesis, arguing that mortality drops with age because most transitions that could trigger the risks caused by genetic and developmental malfunctions are concentrated in early life. Of these hypotheses, only those that frame ontogenescence as an evolutionary by-product rather than an adaptation can explain the tremendous diversity of organisms and environments in which it occurs.  相似文献   

16.
    
Evolutionary theory suggests that natural selection should synchronize senescence of reproductive and somatic systems. In some species, females show dramatic discordance in senescence rates in these systems, leading to a clear menopause coupled with prolonged postreproductive life span. The Mother Hypothesis proposes that menopause evolved to avoid higher reproductive‐mediated mortality risk in late‐life and ensure the survival of existing offspring. Despite substantial theoretical interest, the critical predictions of this hypothesis have never been fully tested in populations with natural fertility and mortality. Here, we provide an extensive test, investigating both short‐ and long‐term consequences of mother loss for offspring, using multigenerational demographic datasets of premodern Finns and Canadians. We found no support for the Mother Hypothesis. First, although the risk of maternal death from childbirth increased from middle age, the risk only reached 1–2% at age 50 and was predicted to range between 2% and 8% by 70. Second, offspring were adversely affected by maternal loss only in their first two years (i.e., preweaning), having reduced survival probability in early childhood as well as ultimate life span and fitness. Dependent offspring were not affected by maternal death following weaning, either in the short‐ or long‐term. We suggest that although mothers are required to ensure offspring survival preweaning in humans, maternal loss thereafter can be compensated by other family members. Our results indicate that maternal effects on dependent offspring are unlikely to explain the maintenance of menopause or prolonged postreproductive life span in women.  相似文献   

17.
    
Studies of inbreeding depression in plant populations have focused primarily on comparisons of selfing versus outcrossing in self-compatible species. Here we examine the effect of five naturally occurring levels of inbreeding (f ranging from 0 to 0.25 by pedigree) on components of lifetime fitness in a field population of the self-incompatible annual, Raphanus sativus. Pre- and postgermination survival and reproductive success were examined for offspring resulting from compatible cross-pollinations. Multiple linear regression of inbreeding level on rates of fruit and seed abortion as well as seed weight and total seed weight per fruit were not significant. Inbreeding level was not found to affect seed germination, offspring survival in the field, date of first flowering, or plant biomass (dry weight minus fruit). The effect of inbreeding on seedling viability in the greenhouse and viability to flowering was significant but small and inconsistently correlated with inbreeding level. Maternal fecundity, however, a measure of seed yield, was reduced almost 60% in offspring from full-sib crosses (f = 0.25) relative to offspring resulting from experimental outcross pollinations (f = 0). Water availability, a form of physiological stress, affected plant biomass but did not affect maternal fecundity, nor did it interact with inbreeding level to influence these characters. The delayed expression of strong inbreeding depression suggests that highly deleterious recessive alleles were not a primary cause of fitness loss with inbreeding. Highly deleterious recessives may have been purged by bottlenecks in population size associated with the introduction of Raphanus and its recent range expansions. In general, reductions in total relative fitness of greater than 50% associated with full-sib crosses should be sufficient to prohibit the evolution of self-compatibility via transmission advantage in Raphanus.  相似文献   

18.
Inbreeding depression is one of the major selective forces driving the evolution of mating systems. Previous theories predict that long-lived plants will show a negative correlation between inbreeding depression and the level of inbreeding (as determined by an inbreeding coefficient) at maturity, but the extent of this correlation may vary among life stages because of variation in the genetic basis for inbreeding depression at different stages. To test this prediction, I used electrophoretic allozyme analysis and pollination experiments to examine the fixation index (F is) at maturity and inbreeding depression in the early and late life stages of two populations with different outcrossing rates of a highly self-fertilizing tree, Magnolia obovata. The magnitude of inbreeding depression for early survival (δ e) in an outcrossing population (t m = 0.51; F is = −0.015) was higher (δ e = 0.97) than that in an inbreeding population (t m = 0.18; F is = 0.15; δ e = 0.38). From these results, I estimated that both populations exhibited high inbreeding depression for late survival (δ l) (0.94 in the outcrossing population and 0.93 in the inbreeding one) and lifetime survival (δ t) (0.99 and 0.96, respectively). My results and previously published data demonstrate the predicted relationship between inbreeding depression and the level of inbreeding for early survival, but not for late survival. This suggests that there is a differential genetic basis for inbreeding depression at different life stages. The inbreeding depression for late survival appears to play a central role in the maintenance of reproductive traits that promote outcrossing in M. obovata.  相似文献   

19.
小种群的遗传变异和近交衰退   总被引:10,自引:0,他引:10       下载免费PDF全文
小种群一般拥有较小的遗传变异.当前人为干扰和破坏造成了生物种群个体数量减少,导致种群遗传多样性丧失,引起近交衰退,影响到种群后代适应性.产生近交衰退的原因是近交增加了有害等位基因纯合几率,导致个体适应能力下降.近交衰退受交配系统、世系效应、环境胁迫等的影响.在物种保护和恢复过程中,要防止近交衰退.  相似文献   

20.
Summary Self-compatible autotetraploids are likely to set much of their seed by selfing. Formulae are presented for the frequencies in any generation of states of loci, from homozygous to quadri-allelic, considering the frequencies of selfing and of double reduction but not allowing for the effects of inbreeding depression on population structure. The changing structure of populations over generations is also explored by computer simulation, incorporating selection against inbreds but ignoring double reduction. The findings are discussed in relation to mass-selection programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号