共查询到20条相似文献,搜索用时 0 毫秒
1.
The urban heat island effect, where urban areas exhibit higher temperatures than less‐developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanization influences the ability of organisms to live in cities. Ectotherms are sensitive to environmental changes that affect thermal conditions, and therefore, increased urban temperatures may pose significant challenges to thermoregulation and alter temperature‐dependent activity. To evaluate whether these changes to the thermal environment affect the persistence and dispersal of ectothermic species in urban areas, we studied two species of Anolis lizards (Anolis cristatellus and Anolis sagrei) introduced to Miami‐Dade County, FL, USA, where they occur in both urban and natural habitats. We calculated canopy openness and measured operative temperature (Te), which estimates the distribution of body temperatures in a non‐thermoregulating population, in four urban and four natural sites. We also captured lizards throughout the day and recorded their internal body temperature (Tb). We found that urban areas had more open canopies and higher Te compared to natural habitats. Laboratory trials showed that A. cristatellus preferred lower temperatures than A. sagrei. Urban sites currently occupied by each species appear to lower thermoregulatory costs for both species, but only A. sagreihad field Tb that were more often within their preferred temperature range in urban habitats compared to natural areas. Furthermore, based on available Te within each species' preferred temperature range, urban sites with only A. sagrei appear less suitable for A. cristatellus, whereas natural sites with only A. cristatellus are less suitable for A. sagrei. These results highlight how the thermal properties of urban areas contribute to patterns of persistence and dispersal, particularly relevant for studying species invasions worldwide. 相似文献
2.
Shane C. Campbell‐Staton Anna Bare Jonathan B. Losos Scott V. Edwards Zachary A. Cheviron 《Molecular ecology》2018,27(9):2243-2255
Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments. 相似文献
3.
4.
Delimiting young species is one of the great challenges of systematic biology, particularly when the species in question exhibit little morphological divergence. Anolis distichus, a trunk anole with more than a dozen subspecies that are defined primarily by dewlap color, may actually represent several independent evolutionary lineages. To test this, we utilized amplified fragment length polymorphisms (AFLP) genome scans and genetic clustering analyses in conjunction with a coalescent‐based species delimitation method. We examined a geographically widespread set of samples and two heavily sampled hybrid zones. We find that genetic divergence is associated with a major biogeographic barrier, the Hispaniolan paleo‐island boundary, but not with dewlap color. Additionally, we find support for hypotheses regarding colonization of two Hispaniolan satellite islands and the Bahamas from mainland Hispaniola. Our results show that A. distichus is composed of seven distinct evolutionary lineages still experiencing a limited degree of gene flow. We suggest that A. distichus merits taxonomic revision, but that dewlap color cannot be relied upon as the primary diagnostic character. 相似文献
5.
Anthony P. Russell 《Acta zoologica》2017,98(3):300-309
Adhesive toe pads of geckos house modified components of vascular and/or connective tissues that promote conformity of the setal fields with the locomotor substratum. Similar modifications have been claimed for the digits of Anolis, but evidence for them is not compelling. Angiographic and histological investigations of Anolis failed to identify any evidence of either an intralamellar vascular reticular network or a central sinus. Instead, their vascularity more closely resembles that of lizards in general than that of pad‐bearing geckos. The loose connective tissue of the toe pads likely contributes to their general pliability and flexibility, promoting localized compliance with the substratum. Through the shedding cycle, the lamellae change shape as the replacing setae elongate. The outer epidermal generation lacunar cells on the inner lamellar faces simultaneously hypertrophy, providing for compatibility between overlapping lamellae, enabling reciprocity between them. This contributes to continuing compliance of the setal fields with the substratum. Overall, digital structure and attachment and release kinematics of the toe pads of Anolis are very similar to those of geckos exhibiting an incipient adhesive mechanism. Both lack major anatomical specializations for promoting conformity of the setae with the locomotor substratum beyond those of the seta‐bearing portions of the epidermis. 相似文献
6.
Host specificity is one of the potential factors affecting parasite diversification because gene flow may be facilitated or constrained by the number of host species that a parasite can exploit. We test this hypothesis using a costructure approach, comparing two sympatric pinworm parasites that differ in host specificity – Parapharyngodon cubensis and Spauligodon anolis – on the Puerto Rican Bank and St. Croix in the Caribbean. Spauligodon anolis specializes on Anolis lizards, whereas P. cubensis parasitizes Anolis lizards as well as many other species of lizards and snakes. We collected lizards from across the Puerto Rican Bank and St. Croix, sampled them for S. anolis and P. cubensis and generated nuclear and mitochondrial sequence data from the parasites. We used these data to show that P. cubensis is comprised of multiple cryptic species that exhibit limited population structure relative to S. anolis, which is consistent with our prediction based on their host specificity. We also provide evidence that the distribution of P. cubensis species is maintained by competitive exclusion, and in contrast to previous theoretical work, the parasites with the greatest number of host species also reach the highest prevalence rates. Overall, our results are consistent with the hypothesis that host specificity shapes parasite diversification, and suggest that even moderate differences in host specificity may contribute to substantial differences in diversification. 相似文献
7.
Thermoregulatory capacity may constrain the distribution of marine mammals despite having anatomical and physiological adaptations to compensate for the thermal challenges of an aquatic lifestyle. We tested whether subadult female northern fur seals (Callorhinus ursinus) experience increased thermoregulatory costs in water temperatures potentially encountered during their annual migration in the Bering Sea and North Pacific Ocean. Metabolic rates were measured seasonally in 6 captive female northern fur seals (2.75–3.5 yr old) in ambient air and controlled water temperatures of 2°C, 10°C, and 18°C. Rates of oxygen consumption in ambient air (1°C–18°C) were not related to environmental temperature except below 2.5°C (winter only). However, metabolism was significantly higher during the fall seasonal trials (September–October) compared to other times of year, perhaps due to the costs of molting. The fur seals appeared thermally neutral in all seasons for all water temperatures tested (2°C–18°C) except during the summer when metabolic rates were higher in the 2°C water. Comparing this broad thermal neutral zone to the average sea surface temperatures potentially encountered during annual migrations indicates wild fur seals can likely exploit a large geographic area without added thermal metabolic costs. 相似文献
8.
9.
A major barrier to evolutionary studies of sex determination and sex chromosomes has been a lack of information on the types of sex‐determining mechanisms that occur among different species. This is particularly problematic in groups where most species lack visually heteromorphic sex chromosomes, such as fish, amphibians and reptiles, because cytogenetic analyses will fail to identify the sex chromosomes in these species. We describe the use of restriction site‐associated DNA (RAD) sequencing, or RAD‐seq, to identify sex‐specific molecular markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the lizard Anolis carolinensis. We performed RAD‐seq on seven male and ten female A. carolinensis and found one male‐specific molecular marker. Anolis carolinensis has previously been shown to possess male heterogamety and the recently published A. carolinensis genome facilitated the characterization of the sex‐specific RAD‐seq marker. We validated the male specificity of the new marker using PCR on additional individuals and also found that it is conserved in some other Anolis species. We discuss the utility of using RAD‐seq to identify sex‐determining mechanisms in other species with cryptic or homomorphic sex chromosomes and the implications for the evolution of male heterogamety in Anolis. 相似文献
10.
Ivan Prates Danielle Rivera Miguel T. Rodrigues Ana C. Carnaval 《Molecular ecology》2016,25(20):5174-5186
Shifts in the geographic distribution of habitats over time can promote dispersal and vicariance, thereby influencing large‐scale biogeographic patterns and ecological processes. An example is that of transient corridors of suitable habitat across disjunct but ecologically similar regions, which have been associated with climate change over time. Such connections likely played a role in the assembly of tropical communities, especially within the highly diverse Amazonian and Atlantic rainforests of South America. Although these forests are presently separated by open and dry ecosystems, paleoclimatic and phylogenetic evidence suggest that they have been transiently connected in the past. However, little is known about the timing, magnitude and the distribution of former forest connections. We employ sequence data at multiple loci from three codistributed arboreal lizards (Anolis punctatus, Anolis ortonii and Polychrus marmoratus) to infer the phylogenetic relationships among Amazonian and Atlantic Forest populations and to test alternative historical demographic scenarios of colonization and vicariance using coalescent simulations and approximate Bayesian computation (ABC). Data from the better‐sampled Anolis species support colonization of the Atlantic Forest from eastern Amazonia. Hierarchical ABC indicates that the three species colonized the Atlantic Forest synchronously during the mid‐Pleistocene. We find support of population bottlenecks associated with founder events in the two Anolis, but not in P. marmoratus, consistently with their distinct ecological tolerances. Our findings support that climatic fluctuations provided key opportunities for dispersal and forest colonization in eastern South America through the cessation of environmental barriers. Evidence of species‐specific histories strengthens assertions that biological attributes play a role in responses to shared environmental change. 相似文献
11.
Ivan V. Monagan Jr. Jonathan R. Morris Alison R. Davis Rabosky Ivette Perfecto John Vandermeer 《Ecology and evolution》2017,7(7):2193-2203
Our knowledge of ecological interactions that bolster ecosystem function and productivity has broad applications to the management of agricultural systems. Studies suggest that the presence of generalist predators in agricultural landscapes leads to a decrease in the abundance of herbivorous pests, but our understanding of how these interactions vary across taxa and along gradients of management intensity and eco‐geographic space remains incomplete. In this study, we assessed the functional response and biocontrol potential of a highly ubiquitous insectivore (lizards in the genus Anolis) on the world's most important coffee pest, the coffee berry borer (Hypothalemus hampei). We conducted field surveys and laboratory experiments to examine the impact of land‐use intensification on species richness and abundance of anoles and the capacity of anoles to reduce berry borer infestations in mainland and island coffee systems. Our results show that anoles significantly reduce coffee infestation rates in laboratory settings (Mexico, p = .03, F = 5.13 df = 1, 35; Puerto Rico, p = .014, F = 8.82, df = 1, 10) and are capable of consuming coffee berry borers in high abundance. Additionally, diversified agroecosystems bolster anole abundance, while high‐intensity practices, including the reduction of vegetation complexity and the application of agrochemicals were associated with reduced anole abundance. The results of this study provide supporting evidence of the positive impact of generalist predators on the control of crop pests in agricultural landscapes, and the role of diversified agroecosystems in sustaining both functionally diverse communities and crop production in tropical agroecosystems. 相似文献
12.
Activity budgets influence the expression of life history traits as well as population dynamics. For ectotherms, a major constraint on activity is environmental temperature. Nonetheless, we currently lack a comprehensive conceptual framework for understanding thermal constraints on activity, which hinders our ability to rigorously apply activity data to answer ecological and evolutionary questions. Here, we integrate multiple aspects of temperature‐dependent activity into a single unified framework that has general applicability. We also provide examples of the implementation of this framework to address fundamental questions in ecology relating to climate change vulnerability and species’ distributions using empirical data from a tropical lizard. 相似文献
13.
Jason L. Strickland Sharon Carter Fred Kraus Christopher L. Parkinson 《Zoological Journal of the Linnean Society》2016,178(3):663-678
The venomous snake subfamily Hydrophiinae includes more than 40 genera and approximately 200 species. Most members of this clade inhabit Australia, and have been well studied. But, because of poor taxon sampling of Melanesian taxa, basal evolutionary relationships have remained poorly resolved. The Melanesian genera Ogmodon, Loveridgelaps, and Salomonelaps have not been included in recent phylogenetic studies, and the New Guinean endemic, Toxicocalamus, has been poorly sampled and sometimes recovered as polyphyletic. We generated a multilocus phylogeny for the subfamily using three mitochondrial and four nuclear loci so as to investigate relationships among the basal hydrophiine genera and to determine the status of Toxicocalamus. We sequenced these loci for eight of the 12 described species within Toxicocalamus, representing the largest molecular data set for this genus. We found that a system of offshore island arcs in Melanesia was the centre of origin for terrestrial species of Hydrophiinae, and we recovered Toxicocalamus as monophyletic. Toxicocalamus demonstrates high genetic and morphological diversity, but some of the molecular diversity is not accompanied by diagnostic morphological change. We document at least five undescribed species that all key morphologically to Toxicocalamus loriae (Boulenger, 1898), rendering this species polyphyletic. Continued work on Toxicocalamus is needed to document the diversity of this genus, and is likely to result in the discovery of additional species. Our increased taxon sampling allowed us to better understand the evolution and biogeography of Hydrophiinae; however, several unsampled lineages remain, the later study of which may be used to test our biogeographic hypothesis. 相似文献
14.
Marie Altmanová Michail Rovatsos Lukáš Kratochvíl Martina Johnson Pokorná 《Biological journal of the Linnean Society. Linnean Society of London》2016,118(3):618-633
Iguanas (Pleurodonta) are predominantly distributed in the New World, but one previously cytogenetically understudied family, Opluridae, is endemic to Madagascar and the adjacent Grand Comoro archipelago. The aim of our contribution is to fill a gap in the cytogenetic understanding of this biogeographically puzzling lineage. Based on examination of six species, we found that oplurids are rather conservative in karyotype, which is composed of 36 chromosomes as in most iguanas. However, the species differ in the position of the nucleolar organizer region and heterochromatic blocks and in the accumulation and distribution of interstitial telomeric sequences (ITSs), which suggests cryptic intra‐ and interchromosomal rearrangements. All tested species share the XY sex‐determining system homologous to most other iguana families. The oplurid Y chromosome is degenerated, very small in size but mostly euchromatic. Fluorescence in situ hybridization with probes composed of microsatellite motifs revealed variability among species in the accumulation of particular repeats on the Y chromosome. This variability accounts for the differences in the detection of sex chromosomes across the species of the family using comparative genome hybridization (CGH) technique. Our study demonstrates the limits of the commonly used CGH technique to uncover sex chromosomes even in organisms with heteromorphic and sequentially largely differentiated sex chromosomes. 相似文献
15.
Annegret Grimm‐Seyfarth Jean‐Baptiste Mihoub Klaus Henle 《Ecology and evolution》2017,7(17):6803-6813
Behavioral thermoregulation is an important mechanism allowing ectotherms to respond to thermal variations. Its efficiency might become imperative for securing activity budgets under future climate change. For diurnal lizards, thermal microhabitat variability appears to be of high importance, especially in hot deserts where vegetation is highly scattered and sensitive to climatic fluctuations. We investigated the effects of a shading gradient from vegetation on body temperatures and activity timing for two diurnal, terrestrial desert lizards, Ctenotus regius, and Morethia boulengeri, and analyzed their changes under past, present, and future climatic conditions. Both species’ body temperatures and activity timing strongly depended on the shading gradient provided by vegetation heterogeneity. At high temperatures, shaded locations provided cooling temperatures and increased diurnal activity. Conversely, bushes also buffered cold temperature by saving heat. According to future climate change scenarios, cooler microhabitats might become beneficial to warm‐adapted species, such as C. regius, by increasing the duration of daily activity. Contrarily, warmer microhabitats might become unsuitable for less warm‐adapted species such as M. boulengeri for which midsummers might result in a complete restriction of activity irrespective of vegetation. However, total annual activity would still increase provided that individuals would be able to shift their seasonal timing towards spring and autumn. Overall, we highlight the critical importance of thermoregulatory behavior to buffer temperatures and its dependence on vegetation heterogeneity. Whereas studies often neglect ecological processes when anticipating species’ responses to future climate change the strongest impact of a changing climate on terrestrial ectotherms in hot deserts is likely to be the loss of shaded microhabitats rather than the rise in temperature itself. We argue that conservation strategies aiming at addressing future climate changes should focus more on the cascading effects of vegetation rather than on shifts of species distributions predicted solely by climatic envelopes. 相似文献
16.
17.
Levi N. Gray Anthony J. Barley David M. Hillis Carlos J. Pavn‐Vzquez Steven Poe Brittney A. White 《Ecology and evolution》2020,10(8):3738-3746
Sexually selected traits can be expected to increase in importance when the period of sexual behavior is constrained, such as in seasonally restricted breeders. Anolis lizard male dewlaps are classic examples of multifaceted signaling traits, with demonstrated intraspecific reproductive function reflected in courtship behavior. Fitch and Hillis found a correlation between dewlap size and seasonality in mainland Anolis using traditional statistical methods and suggested that seasonally restricted breeding seasons enhanced the differentiation of this signaling trait. Here, we present two tests of the Fitch–Hillis Hypothesis using new phylogenetic and morphological data sets for 44 species of Mexican Anolis. A significant relationship between dewlap size and seasonality is evident in phylogenetically uncorrected analyses but erodes once phylogeny is accounted for. This loss of strong statistical support for a relationship between a key aspect of dewlap morphology and seasonality also occurs within a species complex (A. sericeus group) that inhabits seasonal and aseasonal environments. Our results fail to support seasonality as a strong driver of evolution of Anolis dewlap size. We discuss the implications of our results and the difficulty of disentangling the strength of single mechanisms on trait evolution when multiple selection pressures are likely at play. 相似文献
18.
William D. Halliday Gabriel Blouin‐Demers 《Ethology : formerly Zeitschrift fur Tierpsychologie》2016,122(11):912-921
The ideal free distribution (IFD) predicts that optimal foragers will select foraging patches to maximize food rewards and that groups of foragers should thus be distributed between food patches in proportion to the availability of food in those patches. Because many of the underlying mechanisms of foraging are temperature dependent in ectotherms, the distribution of ectothermic foragers between food patches may similarly depend on temperature because the difference in fitness rewards between these patches may change with temperature. We tested the hypothesis that the distribution of Common Gartersnakes (Thamnophis sirtalis) between food patches can be explained by an IFD, but that conformance to an IFD weakens as temperature departs from the optimal temperature because fitness rewards, interference competition and the number of individuals foraging are highest at the optimal temperature. First, we determined the optimal temperature for foraging. Second, we examined group foraging at three temperatures and three density treatments. Search time was optimized at 27°C, handling time at 29°C and digestion time at 32°C. Gartersnakes did not match an IFD at any temperature, but their distribution did change with temperature: snakes at 20°C and at 30°C selected both food patches equally, while snakes at 25°C selected the low food patch more at low density and the high food patch more at high density. Food consumption and competition increased with temperature, and handling time decreased with temperature. Temperature therefore had a strong impact on foraging, but did not affect the IFD. Future work should examine temperature‐dependent foraging in ectotherms that are known to match an IFD. 相似文献
19.
20.
The thermoregulatory abilities of northern fur seals (Callorhinus ursinus) during their first two years in the frigid waters of the North Pacific Ocean may limit their geographic distribution and alter the costs for exploiting different species of prey. We determined the thermoneutral zone of six young northern fur seals by measuring their metabolism in ambient air and controlled water temperatures (0°C–12°C) from ages 8 to 24 mo. We found that the ambient air temperatures within our study (overall 1.5°C–23.9°C) did not affect resting metabolic rates. Calculated lower critical temperatures in water varied between 3.9°C and 8.0°C, while an upper critical temperature in water was only discernible during a single set of trials. These thermal responses provide insight into the possible physiological constraints on foraging ecology in young northern fur seals, as well as the potential energetic consequences of ocean climate change and altered prey distributions. 相似文献