首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genus Dacus Fabricius includes economically important pest fruit flies distributed in the Afrotropical and Indo-Australian regions. Two recent revisions based on morphological characters proposed new and partially discordant classifications synonymizing/revalidating several subgeneric names and forming species groups. Regardless these efforts, the phylogenetic relationships among Dacus species remained largely unresolved mainly because of the difficulties in assigning homologous character states. Therefore we investigated the phylogeny of African Dacus by sequencing 71 representatives of 32 species at two mitochondrial (COI, 16S) and one nuclear (period) gene fragments. Phylogenetic relationships were inferred through Bayesian and Maximum Parsimony methods and hypotheses about the monophyly of Dacus subgenera were tested by Shimodaira–Hasegawa tests. The congruence tests and the analyses of the single gene fragments revealed that the nuclear gene supports similar conclusions as the two mitochondrial genes. Levels of intra- and inter-specific differentiation of Dacus species were highly variable and, in some cases, largely overlapping. The analyses of the concatenated dataset resolved two major bootstrap-supported groups as well as a number of well-supported clades and subclades that often comprised representatives of different subgenera. Additionally, specimens of Dacus humeralis from Eastern and Western African localities formed separate clades, suggesting cryptic differentiation within this taxon. The comparisons between the molecular phylogeny and the morphological classification revealed a number of discrepancies and, in the vast majority of cases, the molecular data were not compatible with the monophyly of the currently recognised subgenera. Conversely, the molecular data showed that Apocynaceae feeders are a monophyletic sister group of species feeding on both Cucurbitaceae and Passifloraceae (these latter being also monophyletic). These results show a clear association between the molecular phylogeny of African Dacus and the evolution of host plant choice and provide a basis towards a more congruent taxonomy of this genus.  相似文献   

2.
Dryopteris is one of the largest and most taxonomically complex fern genera in the Dryopteridaceae, with 127 species occurring throughout temperate, sub-temperate, subtropical, and tropical China. Investigations of the evolutionary relationships of a subset of these Chinese Dryopteris species, using DNA sequence-based methods, specifically tested the monophyly of the genus and the validity of the previous subgeneric classifications. Sixty species of Dryopteris, four closely related non-Dryopteris and three species of Arachniodes, were used as outgroup taxa. The rps4-trnS region of the chloroplast genome was sequenced in these species for the first time. Both maximum parsimony (MP) and neighbor-joining (NJ) analyses identified six polyphyletic clades that contained Dryopteris species. These results were supported by a Bayesian analysis of the same data set. The phylogenetic patterns strongly suggest the polyphyletic status of Dryopteris; the monophyletic groupings of the species do not correspond with either Fraser-Jenkins [In: Bull Brit Mus (Nat Hist) Bot 14(3):183–218, 1986} or Wu (In: Flora Reipublica Popularis Sinicae Tomus 5 (1) pp 1–241, 2000] subgeneric classification of Dryopteris, except in a few specific cases. This work represents the first molecular systematic analyses of Chinese Dryopteris, and we propose the next steps necessary to recognize new subgenera of the genus.  相似文献   

3.
Molecular sequences now overwhelm morphology in phylogenetic inference. Nonetheless, most molecular studies are conducted on a limited number of taxa, as DNA rarely can be analysed from old museum types or fossils. During the last 20 years, more than 150 molecular studies have challenged the current phylogenetic classification of the family Drosophilidae Rondani based on morphological characters. Most studies concerned a single genus, Drosophila Fallén, and included only few representative species from 17 out of the 78 genera of the family. Therefore, these molecular studies were unable to provide an alternative classification scheme. A supermatrix analysis of seven nuclear and one mitochondrial genes (8248 bp) for 33 genera was conducted using outgroups from one calyptrate and four ephydroid families. The Bayesian phylogeny was consistent with previous molecular studies including whole genome sequences and divided the Drosophilidae into four monophyletic clades. Morphological characters, mostly male genitalia, then were compared thoroughly between the four clades and homologous character states were identified. These states were then checked for 70 genera and a revised phylogenetic, family‐group classification for the Drosophilidae is proposed. Two genera –Cladochaeta Coquillett and Diathoneura Duda – of the tribe Cladochaetini Grimaldi are transferred to the family Ephydridae. The Drosophilidae is divided into two subfamilies: Steganinae Hendel (30 genera) and Drosophilinae Rondani (43 genera). A further two genera, Apacrochaeta Duda and Sphyrnoceps de Meijere, are incertae sedis, and Palmophila Grimaldi, is synonymized with Drosophila syn.n. The Drosophilinae is subdivided into two tribes: the re‐elevated Colocasiomyini Okada (nine genera) and Drosophilini Okada. The paraphyly of the genus Drosophila was not resolved to avoid affecting the binomina of important laboratory model species; however, its subgeneric classification was revised in light of molecular and morphological data. Three subgenera, namely Chusqueophila Brncic, Phloridosa Sturtevant and Psilodorha Okada, were synonymized with the subgenus Drosophila (Drosophila) Fallén syns.n. Among the 45 species groups and 5 species complexes of Drosophila (Drosophila), 22 groups and 1 complex were transferred to the subgenus Drosophila (Siphlodora) Patterson & Mainland and 6 groups, 2 species subgroups and 3 complexes are considered incertae sedis within the genus Drosophila. Different morphological characters provide different signals at different phylogenetic scales: thoracic characters (wing venation and presternal shape) discriminate families; grasping and erection‐related characters discriminate subfamilies to tribes; whereas phallic paraphyses, i.e. auxiliary intromittent organs, discriminate genera and Drosophila subgenera. The study shows the necessity of analysing morphological characters within a molecular phylogenetic framework to translate molecular phylogenies into taxonomically‐comprehensive classifications.  相似文献   

4.
Although the subfamily Zapodinae (Rodentia, Dipodidae) contains only five species, the phylogeny and taxonomy of these species are still being disputed. First, whether Eozapus and Napaeozapus should be treated as independent genera or subgenera of Zapus has been argued for a long period. Second, the subspecific genetic differentiation of Chinese jumping mouse (Eozapus setchuanus) has not been studied in detail, neither from morphological nor molecular aspects. In this study, the phylogenetic relationship among all the five species of Zapodinae was reconstructed using DNA sequence data from the mitochondrial cytochrome b gene and the nuclear interphotoreceptor retinoid binding protein gene. Bayesian inference, maximum parsimony and maximum likelihood analyses were conducted. The results showed that two major clades could be recognized within Zapodinae. Eozapus setchuanus, is the species endemic to China, strongly formed a monophyletic clade. In the other clade, genus Zapus received significant support in all analyses to be the sister group of the genus Napaeozapus. By comparing genetic distances among these three genera, we conclude that both Eozapus and Napaeozapus should be considered as valid genera rather than subgenera of Zapus. Furthermore, we observed that the two subspecies of E. setchuanus did not form reciprocally monophyletic groups, thus the traditional taxonomy which divided E. setchuanus into two subspecies based on only one morphological character was questionable.  相似文献   

5.
6.
7.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

8.
Marine butterflyfishes (10 genera, 114 species) are conspicuously beautiful and abundant animals found on coral reefs worldwide, and are well studied due to their ecological importance and commercial value. Several phylogenies based on morphological and molecular data exist, yet a well-supported molecular phylogeny at the species level for a wide range of taxa remains to be resolved. Here we present a molecular phylogeny of the butterflyfishes, including representatives of all genera (except Parachaetodon) and at least one representative of all commonly cited subgenera of Chaetodon (except Roa sensuBlum, 1988). Genetic data were collected for 71 ingroup and 13 outgroup taxa, using two nuclear and three mitochondrial genes that total 3332 nucleotides. Bayesian inference, parsimony, and maximum likelihood methods produced a well-supported phylogeny with strong support for a monophyletic Chaetodontidae. The Chaetodon subgenera Exornator and Chaetodon were found to be polyphyletic, and the genus Amphichaetodon was not the basal sister group to the rest of the family as had been previously proposed. Molecular phylogenetic analysis of data from 5 genes resolved some clades in agreement with previous phylogenetic studies, however the topology of relationships among major butterflyfish groups differed significantly from previous hypotheses. The analysis recovered a clade containing Amphichaetodon, Coradion, Chelmonops, Chelmon, Forcipiger, Hemitaurichthys, Johnrandallia, and Heniochus. Prognathodes was resolved as the sister to all Chaetodon, as in previous hypotheses, although the topology of subgeneric clades differed significantly from hypotheses based on morphology. We use the species-level phylogeny for the butterflyfishes to resolve long-standing questions regarding the use of subgenera in Chaetodon, to reconstruct molecular rates and estimated dates of diversification of major butterflyfish clades, and to examine global biogeographic patterns.  相似文献   

9.
Minute moss beetles (Hydraenidae) are one of the most speciose and widespread families of aquatic Coleoptera, with an estimated 4000 extant species, found in the majority of aquatic habitats from coastal rock pools to mountain streams and from the Arctic Circle to the Antarctic islands. Molecular phylogenetic works have improved our understanding of the evolutionary history of the megadiverse Hydraena, Limnebius and Ochthebius in recent years, but most genera in the family have not yet been included in any phylogenetic analyses, particularly most of those which are restricted to the Southern Hemisphere. Using a multimarker molecular matrix, sampling over 40% of described species richness and 75% of currently recognized genera, we infer a comprehensive molecular phylogeny of these predominantly Gondwanan Hydraenidae. Whilst the genera we focus on are morphologically diverse, and currently classified across all four hydraenid subfamilies, our phylogenetic analyses suggest that these Gondwanan genera may instead constitute a single clade. As a result of our findings, the African genus Oomtelecopon Perkins syn.n. is shown to nest within Coelometopon Janssens, the New Zealand Homalaena Ordish syn.n. and Podaena Ordish syn.n. are synonymised with Orchymontia Broun, and the South African Pterosthetops Perkins syn.n. is synonymised with Prosthetops Waterhouse, resulting in Pterosthetopini Perkins syn.n. being synonymised with Prosthetopini Perkins. Mesoceratops Bilton & Jäch gen.n. is erected to accommodate six former members of Mesoceration Janssens, which is shown to be polyphyletic. We propose the replacement name Orchymontia ordishi Jäch & Bilton nom.n. for Homalaena dilatata Ordish, 1984 (now a junior homonym); altogether 39 new combinations are proposed. Our Bayesian divergence times infer an origin for this ‘Gondwana group’ of genera in Africa plus Madagascar in the mid-Cretaceous and suggest that both vicariant and dispersal processes, together with extinctions, have shaped the biogeographic history of these beetles in the Southern Hemisphere during the Cretaceous, resulting in geographically conserved extant lineages. Finally, we reconstruct ancestral habitat shifts across our phylogeny, revealing numerous changes in habitat occupancy in these genera, including multiple origins of fully terrestrial, humicolous taxa in different regions.  相似文献   

10.
Phylogenetic analysis of the genus Euscorpius (Scorpiones: Euscorpiidae) across the Mediterranean region (86 specimens, 77 localities, four DNA markers: 16S rDNA, COI, COII, and ITS1), focusing on Greek fauna, revealed high variation, deep clade divergences, many cryptic lineages, paraphyly at subgenus level, and sympatry of several new and formerly known lineages. Numerous specimens from mainland and insular Greece, undoubtedly the least studied region of the genus' distribution, have been included. The reconstructed phylogeny covers representative taxa and populations across the entire genus of Euscorpius. The deepest clades detected within Euscorpius correspond (partially) to its current subgeneric division, outlining subgenera Tetratrichobothrius and Alpiscorpius. The rest of the genus falls into several clades, including subgenus Polytrichobothrius and a paraphyletic subgenus Euscorpius s.s. Several cryptic lineages are recovered, especially on the islands. The inadequacy of the morphological characters used in the taxonomy of the genus to delineate species is discussed. Finally, the time frame of differentiation of Euscorpius in the study region is estimated and the distributional patterns of the lineages are contrasted with those of other highly diversified invertebrate genera occurring in the study region. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 728–748.  相似文献   

11.
With more than 300 species, the Magnoliaceae family represents a major Magnoliid lineage that is disjunctly distributed in Asia and the New World. The classification of Magnolia s.l. has been highly controversial among taxonomists, varying from one genus with several subgenera, sections, and subsections to several (up to 16) genera. We conducted a comprehensive phylogenetic study of Magnoliaceae on the basis of sequences of the complete chloroplast genomes with a broad taxon sampling of 86 species. The phylogenetic analyses strongly support 15 major clades within Magnolia s.l. due to the non‐monophyly of subgen. Magnolia, the previous subgeneric treatment that recognizes three subgenera, is not supported. Based on the phylogenetic, morphological, and geographic evidence, we recognize two subfamilies in Magnoliaceae: Liriodendroideae and Magnolioideae, each with one genus, Liriodendron and Magnolia, respectively. Magnolia is herein classified into 15 sections: sects. Magnolia, Manglietia, Michelia, Gwillimia, Gynopodium, Kmeria, Maingola, Oyama, Rytidospermum, Splendentes, Talauma, Tuliparia, Macrophylla, Tulipastrum, and Yulania.  相似文献   

12.
The classification and generic definition in the tropical–subtropical fern family Lindsaeaceae have been uncertain and have so far been based on morphological characters only. We have now studied the evolutionary history of the Lindsaeaceae by simultaneously optimizing 55 morphological characters, two plastid genes (rpoC1 and rps4) and three non‐coding plastid intergenic spacers (trnL‐F, rps4‐trnS and trnH‐psbA). Our data set included all genera associated with Lindsaeaceae, except Xyropteris, and c. 73% of the currently accepted species. The phylogenetic relationships of the lindsaeoid ferns with two enigmatic genera that have recently been included in the Lindsaeaceae, Cystodium and Lonchitis, remain ambiguous. Within the monophyletic lindsaeoids, we found six well‐supported and diagnostic clades that can be recognized as genera: Sphenomeris, Odontosoria, Osmolindsaea, Nesolindsaea, Tapeinidium and Lindsaea. Sphenomeris was shown to be monotypic; most taxa formerly placed in that genus belong to the Odontosoria clade. Ormoloma is embedded within Lindsaea and therefore does not merit recognition as a genus. Tapeinidium is sister to a clade with some species formerly placed in Lindsaea that are morphologically distinct from that genus and are transferred to Osmolindsaea and Nesolindsaea, proposed here as two new genera. We do not maintain the current subgeneric classification of Lindsaea itself, because neither of the two generally accepted subgenera (Lindsaea and Odontoloma) is monophyletic, and most of the sections also appear unnatural. Nesolindsaea shows an ancient biogeographical link between Sri Lanka and the Seychelles and many of the main clades within Lindsaea have geographically disjunct distributions. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 305–359.  相似文献   

13.
Seven species of Hydraenidae, Hydrophilidae and Elmidae are recorded from temporary freshwater habitats at the Ateneo de Manila University Campus in the metropolitan area of Manila, Philippines. They were identified as Enochrus (Lumetus) fragiloides d’Orchymont, Helochares (Hydrobaticus) lepidus d’Orchymont, Helochares (Helochares) pallens (MacLeay), Hydraena (Hydraenopsis) scabra d’Orchymont, Hydraena (Hydraenopsis) palawanensis Freitag & Jäch (new record for Luzon Island), Stenelmis sp. A further hydraenid species was unknown to science and is newly described: Hydraena (Hydraenopsis) ateneo Freitag, sp. n. Aedeagus, gonocoxite, spermatheca, and female tergite X are illustrated by computer-based line drawings. Habitus images of all three Hydraena Kugelann species recorded and a checklist of the Philippine Hydraena are provided. The presence of these seven species in the Ateneo campus is briefly discussed in regard to the area’s history. Measures to maintain and extend semi-natural islands of biodiversity in urban areas are suggested.  相似文献   

14.
The systematic knowledge of Simpsonichthys has changed substantially in recent years, with five subgenera having been elevated to the genus category. In view of these taxonomic changes, the aim of the present study was to identify the phylogenetic relationships among this group in order to test a hypothesis of the division of Simpsonichthys. The ATPase 8 and 6 gene sequences of 53 specimens of Simpsonichthys, Xenurolebias, Ophthalmolebias, Spectrolebias and Hypsolebias genera were assessed. The final topology divided the Simpsonichthys subgenera into five clades: clade I (Hypsolebias antenori group and Ophtalmolebias), clade II (Simpsonichtys and Spectrolebias), clade III (Hypsolebias flammeus and H. magnificus groups), clade IV (H. notatus group) and clade V, which included the Xenurolebias genus as a sister group to all the other Simpsonichthys subgenera. Simpsonichthys, Spectrolebias and Hypsolebias could therefor not be described as monophyletic groups, as has been proposed in some hypotheses. The H. antenori, H. notatus and H. magnificus groups, however, were monophyletic. The molecular results also suggested that H. ocellatus belongs to the Hypsolebias flammeus group. The phylogenetic position of H. fasciatus suggested a new group within Hypsolebias, or possibly even a new genus. The characteristics of the Hypsolebias antenori group and their phylogenetic position suggested that only the species of this group should be included in the Hypsolebias genus. The basal position of the Hypsolebias notatus group and its morphological character may represent a new genus. Although the monophyletism of Simpsonichtys could not be recovered, the branches supported the division of the western and eastern clades, possibly due to allopatric speciation. These facts suggest the division of the genus into at least two major clades. In addition, the study of morphological and molecular data is suggested to obtain a better understanding of such complex organisms, and a major taxonomic review is required.  相似文献   

15.
The Munidopsidae, one of three squat lobster families in the Galatheoidea, contains the deepest dwelling squat lobsters, with some occurring at abyssal depths. Munidopsids were formerly divided into two subfamilies: Shinkaiinae, for the unusual hydrothermal vent genus Shinkaia; and Munidopsinae for remaining taxa. Four munidopsid genera are currently recognised (Shinkaia, Leiogalathea, Galacantha and Munidopsis) but the largest genus, Munidopsis, is highly diverse morphologically, with multiple genera or subgenera currently in its synonymy. Phylogenetic studies of galatheoids focussed on high level relationships indicate that Leiogalathea is sister to other munidopsids, but the position of Shinkaia with respect to Munidopsis and Galacantha is unclear, as is the reciprocal monophyly of the latter two genera. Phylogenetic analyses of the Munidopsidae based on mitochondrial 16S and COI sequences, sampling all current genera (including the majority of the formerly recognised subgenera), indicate that the generic and former subfamily classifications do not reflect the phylogeny. Shinkaia and Galacantha clades are nested within Munidopsis rendering the genus paraphyletic and the bi-subfamily classification phylogenetically invalid. Many of the Munidopsis clades recovered, however, correspond well to formerly recognised genera or subgenera, indicating good prospects for a natural subdivision of Munidopsis.  相似文献   

16.
Ochthebiinae, with c. 650 species distributed worldwide, are the second most speciose subfamily of the aquatic beetle family Hydraenidae. They are ecologically the most diverse hydraenid subfamily, with terrestrial species as well as species in almost all types of aquatic habitats, including hypersaline waters. Ochthebiinae include the tribes Ochtheosini (four species in three genera) and Ochthebiini. We provide here the first comprehensive phylogeny of the tribe Ochthebiini, based on 186 species and four subspecies from most genera, subgenera and species groups. We obtained sequence data for a combination of mitochondrial and nuclear gene fragments including the 5′ and 3′ ends of the cytochrome c oxidase subunit 1, the 5′ end of 16S RNA plus the leucine tRNA transfer plus 5′ end of NADH dehydrogenase subunit I, and internal fragments of the large and small ribosomal units. The analyses with maximum likelihood (ML) and Bayesian probabilities consistently recovered a generally well supported phylogeny, with most currently accepted taxa and species groups as monophyletic. We provide a new classification of the tribe based on our phylogenetic results, with six genera: Meropathus Enderlein, Ochthebius Leach, Protochthebius Perkins, Prototympanogaster Perkins, Tympallopatrum Perkins and Tympanogaster Janssens. The genus Ochthebius is here divided into nine subgenera in addition to Ochthebius s.s.: (1) O. (Angiochthebius) Jäch & Ribera; (2) O. (Asiobates) Thomson; (3) O. (Aulacochthebius) Kuwert; (4) O. (Cobalius) Rey; (5) O. (Enicocerus) Stephens; (6) O. (Gymnanthelius) Perkins comb.n. ; (7) O. (Gymnochthebius) Orchymont; (8) O. (Hughleechia) Perkins comb.n. ; and (9) O. (Micragasma) Sahlberg. Within Ochthebius s.s., 17 species groups are proposed, five of them newly established (3, 9, 11, 13 and 16): (1) andraei; (2) atriceps; (3) corrugatus; (4) foveolatus; (5) kosiensis; (6) lobicollis; (7) marinus; (8) metallescens; (9) nitidipennis; (10) notabilis; (11) peisonis; (12) punctatus; (13) quadricollis; (14) rivalis; (15) strigosus; (16) sumatrensis; and (17) vandykei. We elevated to species rank two subspecies of Ochthebius: O. fallaciosus Ganglbauer stat.n. (former subspecies of O. viridis Peyron) and O. deletus Rey stat.rest. (former subspecies of O. subpictus Wollaston).  相似文献   

17.
The species of the genus Hydraena Kugelann, 1794 of the Baroc River basin in the Philippine Island of Mindoro are studied taxonomically. Five species of Hydraena (Hydraenopsis) are recorded of which three new species, namely H. hinundungan sp. n., H. quirao sp. n., and H. sanvicentensis sp. n., are described. Their genital characters are illustrated by line drawings. Photographs of their habitus and type localities, and a map of the collection sites are provided. Their habitat requirements are briefly discussed and their potential usefulness as bioindicators is deduced. The paper is based on a student thesis and intended as a first step towards the review of the entire hydraenid beetle fauna of Mindoro.

http://zoobank.org/urn:lsid:zoobank.org:pub:BDB0EABE-5A9A-46D0-83A2-81A3DA895BFD  相似文献   


18.
Small subunit rDNA sequences of 42 taxa belonging to 10 genera were used to infer phylogenetic relationships among euglenoids. Members of the phototrophic genera Euglena, Phacus, Lepocinclis, Colacium, Trachelomonas, and Strombomonas plus the osmotrophs Astasia longa, Khawkinea quartana, and Hyalophacus ocellatus were included. Six major clades were found in most trees using multiple methods. The utility of Bayesian analyses in resolving these clades is demonstrated. The genus Phacus was polyphyletic with taxa sorting into two main clades. The two clades correlated with overall morphology and corresponded in large part to the previously defined sections, Pleur‐ aspis Pochmann and Proterophacus Pochmann. Euglena was also polyphyletic and split into two clades. In Bayesian analyses species with less plastic pellicles and small disk‐like chloroplasts diverged at the base of the tree. They grouped into a single clade which included the two Lepocinclis spp., which also are rigid and bear similar chloroplasts. The metabolic Euglena species with larger plastids bearing pyrenoids and paramylon caps arose near the top of the tree. The loricates Strombomonas and Trachelomonas formed two well‐ supported, but paraphyletic, clades. The strong support for the individual clades confirmed the value of using lorica features as taxonomic criteria. The separation of the osmotrophic species A. longa, K. quartana, and H. ocellatus into different clades suggested that the loss of the photosynthetic ability has occurred multiple times.  相似文献   

19.
In this study, two mitochondrial genes, cyt b and ND5, and the D2 expansion segment of the 28S nuclear ribosomal gene were used to reconstruct a phylogeny of the mosquito subfamily Anophelinae. The ingroup consisted of all three genera of Anophelinae and five of six subgenera of Anopheles. Six genera of Culicinae were used as the outgroup. Extreme conservation at the protein level coupled with rapid saturation of synonymous positions probably accounted for the lack of meaningful phylogenetic signal in the cyt b gene. In contrast, abundant variation at all codon positions of the ND5 gene allowed recovery of the basal and most of the recent relationships. Phylogenetic analysis of D2 produced results consistent with those of ND5. Combined analysis indicated well-supported monophyletic Anophelinae (with Chagasia basal), Anopheles + Bironella, and subgeneric clades within the genus Anopheles. Moreover, subgenera Nyssorhynchus and Kerteszia were supported as a monophyletic lineage. The Kishino-Hasegawa test could not reject the monophyly of Anopheles, whereas the recently proposed hypothesis of close affinity of Bironella to the subgenus Anopheles was rejected by the analyses of ND5 and combined data sets. The lack of resolution of Bironella and Anopheles clades, or basal relationships among subgeneric clades within Anopheles, suggests their rapid diversification. Recovery of relationships consistent with morphology and previous molecular studies provides evidence of substantial phylogenetic signal in D2 and ND5 genes at levels of divergence from closely related species to subfamily in mosquitoes.  相似文献   

20.
We performed a phylogenetic analysis focused on the hydrophiloid family Helophoridae (Coleoptera: Polyphaga) in order to test the phylogenetic position of selected Mesozoic fossils assigned to the Hydrophiloidea. The analysis is based on 92 characters of larvae and adults, and includes all extant subgenera of Helophorus and representatives of all other extant hydrophiloid families. Based on this analysis, we provide additional evidence for the monophyly of the helophorid lineage containing the families Helophoridae, Georissidae and Epimetopidae, as well as the first hypothesis on the phylogenetic relationships within Helophorus, revealing three main clades: Lihelophorus, Rhopalohelophorus and the clade of sculptured small subgenera; the subgenera Helophorus s.str., Gephelophorus, Trichohelophorus and Transithelophorus are recognized as paraphyletic or polyphyletic. Inclusion of fossil species in the analysis reveals the Mesozoic genera Hydrophilopsia Ponomarenko, Laetopsia Fiká?ek et al. (adult forms) and Cretotaenia Ponomarenko (larval form) as basal extinct clades of the helophorid lineage, the former genus Mesosperchus Ponomarenko as containing probable stem taxa of Helophorus and the former genus Mesohelophorus Ponomarenko as a member of the Helophorus clade containing extant sculptured subgenera. The extant subgenus Thaumhelophorus syn.nov. is synonymized with Rhopalohelophorus. Our results show that the family Helophoridae may be dated back to the late Jurassic (c. 150 Ma) and the extant clades of Helophorus back to the Early Cretaceous (c. 136 Ma). The basal groups of Helophorus and the supposed basal extinct lineages of the helophorid lineages are shown to be aquatic as adults. A single origin of trichobothria and ventral hydrophobic pubescence in the common ancestor of the Hydrophiloidea is hypothesized, indicating ancestral aquatic habits in the adult stage for the whole Hydrophiloidea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号