首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract The flowers of two species of threatened New Zealand mistletoes (Peraxilla tetrapetala and Peraxilla colensoi, Loranthaceae) have explosive buds that do not open unless force is applied by birds or two species of native short‐tongued bees. Opened flowers are visited by a variety of birds and insects. Although both species of Peraxilla conform to a pollination syndrome of ornithophily, bees may be effective alternative pollinators. We investigated the effectiveness of bees and birds as pollinators of P. colensoi at one site and P. tetrapetala at two sites in the South Island. Bees and other insects outnumbered birds as flower visitors at all three sites. By excluding birds with wire cages, we showed that two bee species regularly open flowers of P. tetrapetala, but only rarely open flowers of P. colensoi. Few pollen grains were deposited when either birds or bees opened buds, so opening buds was not by itself sufficient for adequate pollination. Instead, pollen continued to accumulate over the next 6 or 7 days, even inside cages that excluded birds. Both populations of P. tetrapetala were regularly pollen‐limited, but in different ways. At Ohau, opened flowers gained enough pollen to produce seeds, but many buds were not opened and hence failed to set seed. In contrast, at Craigieburn, nearly all buds were opened, but many of these did not receive enough pollen. These results demonstrate that native bees can partially replace birds as pollinators of mistletoes, despite their apparent ornithophilous syndrome. Ongoing reductions in New Zealand forest bird numbers means that the service bees provide may be important for the long‐term future of these plants.  相似文献   

2.
Most flowering plants depend on animal pollination. Several animal groups, including many birds, have specialized in exploiting floral nectar, while simultaneously pollinating the flowers they visit. These specialized pollinators are present in all continents except Europe and Antarctica, and thus, insects are often considered the only ecologically relevant pollinators in Europe. Nevertheless, generalist birds are also known to visit flowers, and several reports of flower visitation by birds in this continent prompted us to review available information in order to estimate its prevalence. We retrieved reports of flower–bird interactions from 62 publications. Forty‐six bird species visited the flowers of 95 plant species, 26 of these being exotic to Europe, yielding a total of 243 specific interactions. The ecological importance of bird–flower visitation in Europe is still unknown, particularly in terms of plant reproductive output, but effective pollination has been confirmed for several native and exotic plant species. We suggest nectar and pollen to be important food resources for several bird species, especially tits Cyanistes and Sylvia and Phylloscopus warblers during winter and spring. The prevalence of bird flower‐visitation, and thus potential bird pollination, is slightly more common in the Mediterranean basin, which is a stopover to many migrant bird species, which might actually increase their effectiveness as pollinators by promoting long‐distance pollen flow. We argue that research on bird pollination in Europe deserves further attention to explore its ecological and evolutionary relevance.  相似文献   

3.
Exclusion experiments were used to assess the effect of different pollinator groups on outcrossing and seed production in Metrosideros excelsa. The main study site was Little Barrier Island, New Zealand where indigenous bird and native solitary bees are the main flower visitors. Our results showed that native birds were more important pollinators of M. excelsa than native bees. Seed production was much higher in open pollination than in two exclusion experiments where either birds were excluded and native bees only had access to flowers, or where all pollinators had been excluded. The number of fertile seeds per capsule was 45% higher after open pollination than in treatments with bee visitation only and 28% higher than in treatments where all flower visitors were excluded. Estimated outcrossing rates were significantly higher (tm = 0.71) for open pollination in the upper canopy (>4 m above‐ground level) where bird visitation is presumed to be more frequent than for a treatment with native bee access only (tm = 0.40). Our results also suggest that a large proportion of seeds (66%) arise from autonomous self‐pollination when all pollinators are excluded. In four trees of a modified mainland population with predominantly introduced birds and a mixture of introduced and native bees there was no decrease in seed production for the treatment allowing bee access only, indicating that – in contrast to native bees – honeybees may be more efficient pollinators of M. excelsa. Observation of the foraging behaviour of both groups of bees showed that native bees contact the stigma of flowers less frequently than honeybees. This is likely to be a consequence of their smaller body size relative to honeybees.  相似文献   

4.
Combined studies of the communities and interaction networks of bird and insect pollinators are rare, especially along environmental gradients. Here, we determined how disturbance by fire and variation in sugar resources shape pollinator communities and interactions between plants and their pollinating insects and birds. We recorded insect and bird visits to 21 Protea species across 21 study sites and for 2 years in Fynbos ecosystems in the Western Cape, South Africa. We recorded morphological traits of all pollinator species (41 insect and nine bird species). For each site, we obtained estimates of the time since the last fire (range: 2–25 calendar years) and the Protea nectar sugar amount per hectare (range: 74–62 000 g/ha). We tested how post-fire age and sugar amount influence the total interaction frequency, species richness and functional diversity of pollinator communities, as well as pollinator specialization (the effective number of plant partners) and potential pollination services (pollination service index) of insects and birds. We found little variation in the total interaction frequency, species richness and functional diversity of insect and bird pollinator communities, but insect species richness increased with post-fire age. Pollinator specialization and potential pollination services of insects and birds varied differently along the environmental gradients. Bird pollinators visited fewer Protea species at sites with high sugar amount, while there was no such trend for insects. Potential pollination services of insect pollinators to Protea species decreased with increasing post-fire age and resource amounts, whereas potential pollination services of birds remained constant along the environmental gradients. Despite little changes in pollinator communities, our analyses reveal that insect and bird pollinators differ in their specialization on Protea species and show distinct responses to disturbance and resource gradients. Our comparative study of bird and insect pollinators demonstrates that birds may be able to provide more stable pollination services than insects.  相似文献   

5.
  • Plant species that are effective colonisers of transient habitats are expected to have a capacity for uniparental reproduction and show flexibility in pollination systems. Such traits may enable populations to be established from a small number of founding individuals without these populations succumbing to reductions in fecundity arising from pollinator limitation.
  • We tested these predictions for Aloe thraskii (Xanthorrhoeaceae), a succulent treelet that colonises shifting coastal dunes and has both bird and bee pollinators. We performed hand‐pollination experiments, and selectively excluded bird visitors to determine differences in pollinator effectiveness. We measured pollinator visitation rates and fecundity in populations varying in their size, density and isolation distance.
  • Controlled hand‐pollinations revealed that unlike most other Aloe species, A. thraskii is self‐compatible and thus capable of uniparental reproduction. The species does however depend on pollinators and is visited by various bird species as well as by bees. Fruit and seed set are not affected by selective exclusion of birds, thus indicating that bees are effective pollinators. Bird visitation rates increased with increasing plant height and population size, while bee visitation rates increased with increasing population size and density. We found that seed set per flower was lower in large populations than in small populations.
  • These results suggest that establishment of populations of A. thraskii from a small number of individuals is unlikely to be limited by the fecundity of individual plants.
  相似文献   

6.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

7.
Native birds may have been underestimated as pollinators of the New Zealand flora due to their early decline in abundance and diversity on the mainland. This paper reconsiders the relative importance of birds and insects as pollinators to eight native flowering plants, representing a range of pollination syndromes, on two offshore island refuges. Experimental manipulations were made on five of these plant species to assess the relative effectiveness of bird and insect visitors as pollinators. In addition, foraging behaviour and the respective morphologies of flowers and visitors were measured at all eight plants to identify the main pollinators. The experimental measures showed that percentage fruit set was significantly higher in flowers exposed to birds than flowers from which birds were excluded in all manipulated plants. The observational measures revealed that for six of the flowering species (Sophora microphylla, Vitex lucens, Pittosporum crassifolium, Pittosporum umbellatum, Pseudopanax arboreus and Dysoxylum spectabile) the endemic honeyeaters were most likely to meet the conditions necessary for successful pollination. For the remaining two species (Metrosideros excelsa and Geniostoma ligus trifolium) the contribution by honeyeaters and insects to pollination was equivalent. The results suggest that the role of the endemic honeyeaters in pollination of the New Zealand flora, and the subsequent regeneration of native forest ecosystems, should be important considerations in ecosystem management.  相似文献   

8.
Fang Q  Chen YZ  Huang SQ 《Annals of botany》2012,109(2):379-384

Background and Aims

Winter-flowering plants outside the tropics may experience a shortage of pollinator service, given that insect activity is largely limited by low temperature. Birds can be alternative pollinators for these plants, but experimental evidence for the pollination role of birds in winter-flowering plants is scarce.

Methods

Pollinator visitation to the loquat, Eriobotrya japonica (Rosaceae), was observed across the flowering season from November to January for two years in central China. Self- and cross-hand pollination was conducted in the field to investigate self-compatibility and pollen limitation. In addition, inflorescences were covered by bird cages and nylon mesh nets to exclude birds and all animal pollinators, respectively, to investigate the pollination role of birds in seed production.

Results

Self-fertilization in the loquat yielded few seeds. In early winter insect visit frequency was relatively higher, while in late winter insect pollinators were absent and two passerine birds (Pycnonotus sinensis and Zosterops japonicus) became the major floral visitors. However, seed-set of open-pollinated flowers did not differ between early and late winter. Exclusion of bird visitation greatly reduced seed-set, indicating that passerine birds were important pollinators for the loquat in late winter. The whitish perigynous flowers reward passerines with relatively large volumes of dilute nectar. Our observation on the loquat and other Rosaceae species suggested that perigyny might be related to bird pollination but the association needs further study.

Conclusions

These findings suggest that floral traits and phenology would be favoured to attract bird pollinators in cold weather, in which insect activity is limited.  相似文献   

9.

Background and Aims

In the UK, the flowers of fruit-bearing hedgerow plants provide a succession of pollen and nectar for flower-visiting insects for much of the year. The fruits of hedgerow plants are a source of winter food for frugivorous birds on farmland. It is unclear whether recent declines in pollinator populations are likely to threaten fruit-set and hence food supply for birds. The present study investigates the pollination biology of five common hedgerow plants: blackthorn (Prunus spinosa), hawthorn (Crataegus monogyna), dog rose (Rosa canina), bramble (Rubus fruticosus) and ivy (Hedera helix).

Methods

The requirement for insect pollination was investigated initially by excluding insects from flowers by using mesh bags and comparing immature and mature fruit-set with those of open-pollinated flowers. Those plants that showed a requirement for insect pollination were then tested to compare fruit-set under two additional pollination service scenarios: (1) reduced pollination, with insects excluded from flowers bagged for part of the flowering period, and (2) supplemental pollination, with flowers hand cross-pollinated to test for pollen limitation.

Key Results

The proportions of flowers setting fruit in blackthorn, hawthorn and ivy were significantly reduced when insects were excluded from flowers by using mesh bags, whereas fruit-set in bramble and dog rose were unaffected. Restricting the exposure of flowers to pollinators had no significant effect on fruit-set. However, blackthorn and hawthorn were found to be pollen-limited, suggesting that the pollination service was inadequate in the study area.

Conclusions

Ensuring strong populations of insect pollinators may be essential to guarantee a winter fruit supply for birds in UK hedgerows.Key words: Blackthorn, bramble, Crataegus monogyna, frugivorous birds, hawthorn, Hedera helix, hedgerows, ivy, insect pollination, Prunus spinosa, Rubus fruticosus, Rosa canina  相似文献   

10.
Pollination by nectarivorous birds is predicted to result in different patterns of pollen dispersal and plant mating compared to pollination by insects. We tested the prediction that paternal genetic diversity, outcrossing rate and realized pollen dispersal will be reduced when the primary pollinator group is excluded from bird‐pollinated plants. Pollinator exclusion experiments in conjunction with paternity analysis of progeny were applied to Eucalyptus caesia Benth. (Myrtaceae), a predominantly honeyeater‐pollinated tree that is visited by native insects and the introduced Apis mellifera (Apidae). Microsatellite genotyping at 14 loci of all adult E. caesia at two populations (n = 580 and 315), followed by paternity analysis of 705 progeny, revealed contrasting results between populations. Honeyeater exclusion did not significantly impact pollen dispersal or plant mating at Mount Caroline. In contrast, at the Chiddarcooping site, the exclusion of honeyeaters led to lower outcrossing rates, a threefold reduction in the average number of sires per fruit, a decrease in intermediate‐distance mating and an increase in near‐neighbour mating. The results from Chiddarcooping suggest that bird pollination may increase paternal genetic diversity, potentially leading to higher fitness of progeny and favouring the evolution of this strategy. However, further experimentation involving additional trees and study sites is required to test this hypothesis. Alternatively, insects may be effective pollinators in some populations of bird‐adapted plants, but ineffective in others.  相似文献   

11.
The cloud forest species Meriania macrophylla (Benth.) Triana has pseudocampanulate flowers with bulbous stamen appendages, typical for the passerine pollination syndrome found in the Melastomataceae tribe Merianieae. The species is further characterized by strong stamen dimorphism (heteranthery), a condition otherwise associated with pollen‐rewarding bee‐pollinated species (both in Melastomataceae and beyond). In passerine‐pollinated Merianieae, however, flowers usually only show weak stamen dimorphism. Here, we conducted field and laboratory investigations to determine the pollinators of M. macrophylla and assess the potential role of strong heteranthery in this species. Our field observations in Costa Rica confirmed syndrome predictions and indeed proved pollination by passerine birds in M. macrophylla. The large bulbous set of stamens functions as a food‐body reward to the pollinating birds, and as trigger for pollen release (bellows mechanism) as typical for the passerine syndrome in Merianieae. In contrast to other passerine‐pollinated Merianieae, the second set of stamens has seemingly lost its rewarding and pollination function, however. Our results demonstrate the utility of the pollination syndrome concept even in light of potentially misleading traits such as strong heteranthery.  相似文献   

12.
Distyly is usually rare or not observed in species thriving on oceanic islands. The rarity of this breeding system is probably because of the difficulty of colonization for distylous plants and the paucity of pollinators on oceanic islands. However, the endemic and endangered tree Psychotria homalosperma has maintained its distylous nature in the oceanic Bonin Islands, Japan. To understand how the distylous breeding system of P. homalosperma has been maintained on these islands and to characterize the reproduction systems, we studied the pollination and reproductive biology of this species. Specifically, we observed current flower visitors and estimated their effects on plant reproduction. We also examined the floral traits and floral volatiles of P. homalosperma to infer its original pollinators, because plant–pollinator relationships in the Bonin Islands have recently been disrupted by anthropological activities. Finally, we examined the fruit set and pollen tube growth in the stigmas under hand and open pollination. Although original pollinators were presumed to be moths with long proboscises, the introduced honeybee, Apis mellifera, was the most common flower visitor. The honeybee carried pollen grains only unidirectionally, from the short‐ to long‐styled morphs, because it could not reach the hidden stigmas of the short‐styled flowers, and long‐styled flowers set fruits 1.7–38 times more than short‐styled ones. This case study indicates that the instability of pollinator fauna can cause distylous species to be rare on oceanic islands.  相似文献   

13.
Specialization of some plants on seed‐eating pollinators is intriguing, especially when co‐pollinators exclusively feeding on nectar are also present. We examined the stability of the morphological specialization of Trollius europaeus (L.) globeflowers with respect to Chiastocheta (Pokorny) flies by artificially opening the flowers. In the montane and subalpine environments studied, other visitors contributed 2% and 28% of all the visits, respectively, and visited open flowers nearly eight times more often than closed flowers, but in both environments their contribution to pollination did not compensate for Chiastocheta aversion against open phenotypes. Net seed set (female success) was slightly higher (+4%) and pollen export (male success) was much higher (+85%) for closed than open flowers. Selection in favour of the closed phenotype was even more intense in patches where open phenotypes were most common, precluding the evolution of open flowers in the study populations.  相似文献   

14.
  • Pollination success of highly specialised flowers is susceptible to fluctuations of the pollinator fauna. Mediterranean Aristolochia rotunda has deceptive trap flowers exhibiting a highly specialised pollination system. The sole pollinators are kleptoparasitic flies in search of food. This study investigates these pollinators on a spatio‐temporal scale and the impact of weather conditions on their availability. Two potential strategies of the plants to cope with pollinator limitation, i.e. autonomous selfing and an increased floral life span, were tested.
  • A total of 6156 flowers were investigated for entrapped pollinators in 10 Croatian populations. Availability of the main pollinator was correlated to meteorological data. Artificial pollination experiments were conducted and the floral life span was recorded in two populations according to pollinator availability.
  • Trachysiphonella ruficeps (Chloropidae) was identified as dominant pollinator, along with less abundant species of Chloropidae, Ceratopogonidae and Milichiidae. Pollinator compositions varied among populations. Weather conditions 15–30 days before pollination had a significant effect on availability of the main pollinator. Flowers were not autonomously selfing, and the floral life span exhibited considerable plasticity depending on pollinator availability.
  • A. rotunda flowers rely on insect pollen vectors. Plants are specialised on a guild of kleptoparasitic flies, rather than on a single species. Pollinator variability may result in differing selection pressures among populations. The availability/abundance of pollinators depends on weather conditions during their larval development. Flowers show a prolonged trapping flower stage that likely increases outcrossing success during periods of pollinator limitation.
  相似文献   

15.
Capsule Flowers of an invasive plant species are more visited by native birds than flowers of ornithophilous endemic plants.

Aims To describe the bird guild and its behaviour visiting the century plant Agave americana in an insular environment and to determine which factors are affecting visitation rates.

Methods We noted number and species of birds visiting inflorescences on Tenerife, Canary Islands. We used multimodel inference of generalized linear models to analyse the factors affecting the number of visits and the visitor species richness.

Results Eighty-one per cent of inflorescences were visited by eight native bird species. All species fed on nectar and only the Atlantic Canary fed also on pollen. Foraging behaviour varied among species. Visitation rate increased with density and diversity of birds and flower characteristics and decreased through the day. The number of species visiting the inflorescences increased with diversity and density of birds in the surroundings and decreased through the day.

Conclusion The native bird community uses the invasive century plant as a feeding resource at a higher rate than it uses endemic ornithophilous plants. This could have negative effects for the pollination of endemic plants, but positive effects for birds.  相似文献   

16.
The bird pollination syndrome is characterized by red, unscented flowers with dilute nectar in long nectar tubes. However, the extent to which plants with such traits actually depend on birds for seed production is seldom determined experimentally, and traits such as colour and scent production are often assessed only subjectively. We documented bird pollination and quantified floral traits in the critically endangered Satyrium rhodanthum (Orchidaceae) from mistbelt grasslands in the summer‐rainfall region of South Africa. Direct observations and motion trigger camera footage revealed amethyst sunbirds as the only pollinators, despite the presence of other potential pollinators. Experimental exclusion of sunbirds significantly reduced pollination and fruit set to near zero. Pollination success in naturally pollinated plants was close to 100% in one year, and fruit set varied from 23 to 64% in other years. Pollen transfer efficiency was 5.8%, which is lower than in related insect‐pollinated species, probably due to a tendency of birds to wipe pollinaria from their beak. Flowers of S. rhodanthum only reflect light in the red range of the spectrum, and they produce only a few aliphatic and monoterpene scent compounds at comparatively low emission rates. Nectar volume and sugar concentration varied between 2.7 and 3.7 μL and 23.7 and 25.9%, respectively. We conclude that S. rhodanthum is highly specialized for pollination by sunbirds. Colour, scent and nectar characteristics differ from insect‐pollinated Satyrium species and are consistent with those expected for bird‐pollinated flowers, and may contribute to lack of visitation by other potential long‐tongued pollinators. Habitat loss probably underlies the critically endangered conservation status of S. rhodanthum, but the specialization for pollination by a single bird species means that reproduction in this orchid is vulnerable to losses in surrounding communities of plants that subsidize the energetic requirements of sunbirds. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 177 , 141–150.  相似文献   

17.
  • Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from ‘pollination syndromes’ can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush‐like inflorescences that exhibit features of both bird and rodent pollination syndromes.
  • We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self‐compatibility and breeding system, and studied pollen dispersal using fluorescent dyes.
  • The dark‐red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male‐ over female‐phase inflorescences, likely because of the male flowers’ higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded.
  • Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent‐pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non‐flying mammals.
  相似文献   

18.
Most plants are pollinated passively, but active pollination has evolved among insects that depend on ovule fertilization for larval development. Anther‐to‐ovule ratios (A/O ratios, a coarse indicator of pollen‐to‐ovule ratios) are strong indicators of pollination mode in fig trees and are consistent within most species. However, unusually high values and high variation of A/O ratios (0.096–10.0) were detected among male plants from 41 natural populations of Ficus tikoua in China. Higher proportions of male (staminate) flowers were associated with a change in their distribution within the figs, from circum‐ostiolar to scattered. Plants bearing figs with ostiolar or scattered male flowers were geographically separated, with scattered male flowers found mainly on the Yungui Plateau in the southwest of our sample area. The A/O ratios of most F. tikoua figs were indicative of passive pollination, but its Ceratosolen fig wasp pollinator actively loads pollen into its pollen pockets. Additional pollen was also carried on their body surface and pollinators emerging from scattered‐flower figs had more surface pollen. Large amounts of pollen grains on the insects' body surface are usually indicative of a passive pollinator. This is the first recorded case of an actively pollinated Ficus species producing large amounts of pollen. Overall high A/O ratios, particularly in some populations, in combination with actively pollinating pollinators, may reflect a response by the plant to insufficient quantities of pollen transported in the wasps’ pollen pockets, together with geographic variation in this pollen limitation. This suggests an unstable scenario that could lead to eventual loss of wasp active pollination behavior.  相似文献   

19.
Pollinators that collect pollen – and specifically, pollen‐specialist bees – are often considered to be the best pollinators of a (host) plant. Although pollen collectors and pollen specialists often benefit host plants, especially in the pollen that they deliver (their pollination “effectiveness”), they can also exact substantial costs because they are motivated to collect as much pollen as possible, reducing the proportion of pollen removed that is subsequently delivered to stigmas (their pollination “efficiency”). From the plant perspective, pollen grains that do not pollinate conspecific stigmas are “wasted”, and potentially costly. We measured costs and benefits of nectar‐collecting, pollen‐collecting, and pollen‐specialist pollinator visitation to the spring ephemeral Claytonia virginica. Visits by the pollen‐specialist bee Andrena erigeniae depleted pollen quickly and thoroughly. Although all pollinators delivered roughly the same number of grains, the pollen specialist contributed most to C. virginica pollen delivery because of high visitation rates. However, the pollen specialist also removed a large number of grains; this removal may be especially costly because it resulted in the depletion of pollen grains in C. virginica populations. While C. virginica appears to rely on pollen transfer by the pollen specialist in these populations, nectar‐collecting visitors could provide the same benefit at a lower cost if their visitation rates increased. Pollen depletion affects a pollinator's value to plants, but is frequently overlooked. If they lower the effectiveness of future floral visitors, visits by A. erigeniae females to C. virginica may be more detrimental than beneficial compared to other pollinators and may, in some circumstances, reduce plant fitness rather than increase it. Therefore, A. erigeniae and C. virginica may vary in their degree of mutualism depending on the ecological context.  相似文献   

20.

Background and Aims

Pollinator-mediated selection and evolution of floral traits have long fascinated evolutionary ecologists. No other plant family shows as wide a range of pollinator-linked floral forms as Orchidaceae. In spite of the large size of this model family and a long history of orchid pollination biology, the identity and specificity of most orchid pollinators remains inadequately studied, especially in the tropics where the family has undergone extensive diversification. Angraecum (Vandeae, Epidendroideae), a large genus of tropical Old World orchids renowned for their floral morphology specialized for hawkmoth pollination, has been a model system since the time of Darwin.

Methods

The pollination biology of A. cadetii, an endemic species of the islands of Mauritius and Reunion (Mascarene Islands, Indian Ocean) displaying atypical flowers for the genus (white and medium-size, but short-spurred) was investigated. Natural pollinators were observed by means of hard-disk camcorders. Pollinator-linked floral traits, namely spur length, nectar volume and concentration and scent production were also investigated. Pollinator efficiency (pollen removal and deposition) and reproductive success (fruit set) were quantified in natural field conditions weekly during the 2003, 2004 and 2005 flowering seasons (January to March).

Key Results

Angraecum cadetii is self-compatible but requires a pollinator to achieve fruit set. Only one pollinator species was observed, an undescribed species of raspy cricket (Gryllacrididae, Orthoptera). These crickets, which are nocturnal foragers, reached flowers by climbing up leaves of the orchid or jumping across from neighbouring plants and probed the most ‘fresh-looking’ flowers on each plant. Visits to flowers were relatively long (if compared with the behaviour of birds or hawkmoths), averaging 16·5 s with a maximum of 41·0 s. At the study site of La Plaine des Palmistes (Pandanus forest), 46·5 % of flowers had pollen removed and 27·5 % had pollinia deposited on stigmas. The proportion of flowers that set fruit ranged from 11·9 % to 43·4 %, depending of the sites sampled across the island.

Conclusions

Although orthopterans are well known for herbivory, this represents the first clearly supported case of orthopteran-mediated pollination in flowering plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号