首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility.

Results

Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains in the future.

Conclusions

Using nine typical pairs of wheat and rice samples having distinct cell wall compositions and wide biomass saccharification, Ara substitution degree and monolignin H proportion have been revealed to be the dominant factors positively determining biomass digestibility upon various chemical pretreatments. The results demonstrated the potential of genetic modification of plant cell walls for high biomass saccharification in bioenergy crops.
  相似文献   

2.
With intensification of interest in microalgae as a source of biomass for biofuel production, rapid methods are needed for lipid screening of cultures. In this study, near-infrared reflectance spectroscopy (NIRS) was assessed as a method for analysing lipid (specifically, total fatty acid methyl esters (FAME) obtainable from processing) and biomass in late logarithmic and stationary phase cultures of the green alga Kirchneriella sp. and the eustigmatophyte Nannochloropsis sp. Culture samples were filtered, scanned by NIRS and chemically analysed; by combining these sets of information, models were developed to predict total biomass, FAME content and FAME as a percentage of dry weight in samples. Chemically derived (actual) and NIRS-predicted data were compared using the coefficient of determination (R 2) and the ratio of the standard deviation (SD) of actual data to the SD of NIRS prediction (RPD). For Kirchneriella sp. samples, models gave excellent prediction (R 2?≥?0.96; RPD?≥?4.8) for all parameters. For Nannochloropsis sp., the model metrics were less favourable (R 2?=?0.84–0.94; RPD?=?2.5–4.2), though sufficient to provide estimations that could be useful for screening purposes. This technique may require further validation and comparison with other species, but this study shows the potential of the NIRS as a rapid screening method (e.g. up to 200 sample analyses per day) for estimating FAME or other microalgal constituents and encourages further investigation.  相似文献   

3.
p‐Coumaroyl ester 3‐hydroxylase (C3′H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3′H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3H deficiency on the structure and properties of grass cell walls. C3H‐knockdown lines generated via RNA interference (RNAi)‐mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3H‐knockout rice mutants generated via CRISPR/Cas9‐mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3H‐knockdown RNAi lines revealed that their lignins were largely enriched in p‐hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non‐acylated lignin units, with grass‐specific γ‐p‐coumaroylated lignin units remaining apparently unchanged. Suppression of C3H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross‐linking ferulates. Collectively, our data demonstrate that C3H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross‐linking. We also demonstrated that C3H‐suppressed rice displays enhanced biomass saccharification.  相似文献   

4.
Presently, the diagnosis of virus infections is based mainly on serological assays. Although polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) have been increasingly used for the diagnosis of such viral infections, the risk of transfusion-transmitted blood-borne viruses remains. Furthermore, PCR and ELISA are expensive and time-consuming, and sometimes cause falsepositive or false-negative results. Therefore, a rapid, accurate and cost-effective diagnostic procedure is needed. We subjected plasma from individuals infected with human immunodeficiency virus type-1 (HIV-1), the causative agent of acquired immune deficiency syndrome (AIDS), as well as plasma from uninfected individuals as a control to near-infrared (NIR) spectroscopy, which may provide a rapid diagnostic method for HIV-1 infection without using any reagent. NIR spectra in the 600-1,000 nm region for plasma from pre-serologically HIV-1-infected individuals and healthy donors were subjected to partial least squares (PLS) regression analysis and leave-out cross-validation to develop a multivariate model to estimate the concentration of HIV-1. Simultaneously, the same plasma samples were examined for HIV-1 p24 by ELISA. The results obtained by the NIR spectroscopy model for HIV-1 yielded a good correlation with those obtained by the reference method (HIV-1 p24 ELISA). These results suggest that NIR spectroscopy using plasma could provide a rapid, accurate, cost-effective tool for large-scale diagnosis of HIV-1 infection.  相似文献   

5.
HDL consists of two major subfractions, HDL2 and HDL3. This paper describes a simple method for assaying HDL subspecies by combining a single precipitation with a direct high density lipoprotein-cholesterol (HDL-C) assay. A precipitation reagent (0.06 ml) containing 1,071 U/ml heparin, 500 mmol/l MnCl2) and 12 mg/ml dextran sulfate was added to a serum (0.3 ml). The sample was incubated and centrifuged at 10,000 rpm for 10 min. HDL3-C was measured by a homogenous HDL-C assay in the supernatant, and HDL2-C was estimated by subtracting the HDL3-C from the direct HDL-C. The HDL3-C and HDL2-C values determined by the precipitation method were identical to those determined by ultracentrifugation, and there were excellent correlations between the methods in the measurements of HDL3-C and HDL2-C (r = 0.933 and 0.978, respectively; n = 102). The two methods also proved to be highly correlated in the measurement of apolipoprotein A-I and A-II in HDL subfractions. The HDL-C subfractions determined by ultracentrifugation were more closely associated with the homogenous HDL-C assay than with the total cholesterol assay, especially in the hypertriglyceridemic samples. Our method is far simpler and more precise than the classical dual precipitation method for HDL-C subfractions, and it can be easily performed in a routine chemical laboratory.  相似文献   

6.
Biofilms are ubiquitous and play an essential role in both environmental processes and hospital infections. Standard methods are not capable of quantifying biomass concentration in dilute suspensions. Furthermore, standard techniques cannot differentiate biomass composition. In this study, a user-friendly technique was developed for measuring biomass cell and polymer content in detached biofilms using a standard coulter counter. The method was demonstrated for an environmentally relevant strain of Pseudomonas aeruginosa (Schroeter) Migula grown in a bioreactor and also for a medically relevant strain of P. aeruginosa (PAO1) grown on standard growth pegs. Results were compared and validated by standard assays, including EPA method 1684 for measuring biomass, microscopic direct counts, and a crystal violet staining assay. The minimum detection limit for the coulter counter method (0.07 mg-biomass L− 1) was significantly lower than the EPA method 1684 (1.9 ± 0.4 mg/L) and the crystal violet assay (1.1 ± 0.2 mg L− 1). However, the coulter counter method is limited to dilute biomass samples (below 204 ± 16 mg L− 1) due to clogging of the aperture tube. While biomass measurements are useful, the major advantage of the coulter counter method is the ability to directly determine EPS, cell, and aggregate fractions after mild chemical treatment. The rapid technique (4–5 min per sample) was used to measure biomass fractions in dispersed P. aeruginosa (Schroeter) and PAO1 biofilms. This technique will be critical for understanding biofilm formation/dispersal.  相似文献   

7.
Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P‐CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co‐IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low‐DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3‐fold and ethanol productivity by 34%–42%. This study has for the first time reported a direct modification for the low‐DP cellulose production that has broad applications in biomass industries.  相似文献   

8.
Slow and unreliable infection in the greenhouse has been a barrier to research on Armillaria root disease. The existing infection assay takes 7–18 months for detectable infection, during which time the inoculum often dies, resulting in unequal challenge among plants. Because symptom expression and mortality are rare, presence or absence of infection, determined by culturing, is the only datum derived from the existing infection assay. This limits both routine comparisons of strain virulence and complex investigations of pathogenesis, neither of which have been done for Armillaria mellea. We tested a new infection assay, in which grape rootstocks growing in tissue culture medium are inoculated, and compared to rootstocks previously characterized from the existing infection assay as tolerant (Freedom) or susceptible (3309C). Culture media of 25 plants per rootstock was inoculated and five plants per rootstock were harvested 0, 2, 4, 6, and 8 weeks postinoculation; the experiment was completed twice. Confocal microscopy and quantitative PCR (Q-PCR) were used to quantify infection. Roots were treated with WGA-AlexaFluor488, hyphae and roots were scanned on green and red channels on a confocal microscope, and percent root colonization was quantified. A fungal gene (EF1α) was determined to have a single copy in A. mellea, and both EF1α and a single-copy grape gene (UFGT) were amplified by Q-PCR; fungal DNA: plant DNA served as a measure of fungal biomass. Armillaria was detected by culture, microscopy, and Q-PCR starting 2 weeks postinoculation from all inoculated plants, demonstrating that the new infection assay is rapid and plants do not escape infection. Our findings of higher percent root colonization (as measured by microscopy) of 3309C than Freedom at all harvests (P < 0.0001), consistently higher fungal biomass (as measured by Q-PCR) of 3309 than Freedom, and a significant positive correlation between percent root colonization and fungal biomass (P = 0.01) suggests that the quantitative methods of our new assay give similar results to the qualitative method of the existing infection assay.  相似文献   

9.
10.
The tissue-specific expression of transgenes is essential in plant breeding programmes to avoid the fitness costs caused by constitutive expression of a target gene. However, knowledge on the molecular mechanisms of tissue-specific gene expression and practicable tissue-specific promoters is limited. In this study, we identified the cis -acting elements of a tissue-specific promoter from rice, PD54O , and tested the application of original and modified PD54O and its cis -elements in the regulation of gene expression. PD54O is a green tissue-specific promoter. Five novel tissue-specific cis -elements (LPSE1, LPSE2, LPSRE1, LPSRE2, PSE1) were characterized from PD54O . LPSE1 activated gene expression in leaf and young panicle. LPSRE2 suppressed gene expression in leaf, root, young panicle and stem, and PSE1 suppressed gene expression in young panicle and stem. LPSRE1 and LPSE2 had dual roles in the regulation of tissue-specific gene expression; both functioned as activators in leaf, but LPSRE1 acted as a repressor in stem and LPSE2 as a repressor in young panicle and root. Transgenic rice plants carrying cry1Ac encoding Bacillus thuringiensis endotoxin, regulated by PD54O , were resistant to leaf-folders, with no Cry1Ac protein found in endosperm or embryo. A reporter gene regulated by a series of truncated PD54O showed various tissue-specific expression patterns. Different fragments of PD54O fused with the constitutive cauliflower mosaic virus 35S promoter suppressed 35S -regulated gene expression in various tissues. PD54O , truncated PD54O and the tissue-specific cis -elements provide useful tools for the regulation of tissue-specific gene expression in rice breeding programmes.  相似文献   

11.
We have constructed a Bacillus subtilis strain in which expression of a vanH::lacZ gene fusion is regulated by VanR and VanS of Enterococcus faecium. This construct allows a nonpathogenic bacterial strain to be used as a model system for studying regulation of vancomycin resistance. Antibiotics and enzymes that affect cell wall biosynthesis and stability were tested for the ability to induce lacZ expression. As a result, fosfomycin and D-cycloserine were added to the group of peptidoglycan synthesis inhibitors shown to induce expression from the vanH promoter. Induction by cell wall hydrolytic enzymes, as well as by antibiotics whose actions may lead to the accumulation of chemically different peptidoglycan precursors, raises the possibility that models that postulate induction by peptidoglycan [correction of peptidodoglycan] precursors are wrong.  相似文献   

12.
Soy hydrolysates are widely used as the major nutrient sources for cell culture processes for industrial manufacturing of therapeutic recombinant proteins. The primary goal of this study was to develop a spectroscopy based chemometric method, a partial least squares (PLS), to screen soy hydrolysates for better yield of protein production (titers) in cell culture medium. Harvest titer values of 29 soy hydrolysate lots with production yield between 490 and 1,350 mg/L were obtained from shake flask models or from manufacture engineering runs. The soy hydrolysate samples were measured by near-infrared (NIR) in reflectance mode using an infrared fiber optic probe. The fiber optic probe could easily enable in situ measurement of the soy hydrolysates for convenient raw material screening. The best PLS calibration has a determination coefficient of R 2?=?0.887 utilizing no spectral preprocessing, the two spectral ranges of 10,000–5,376 cm?1 and 4,980–4,484 cm?1, and a rank of 6 factors. The cross-validation of the model resulted in a determination coefficient of R 2?=?0.741 between the predicted and actual titer values with an average standard deviation of 72 mg/L. Compared with the resource demanding shake flask model, the combination of NIR and chemometric modeling provides a convenient method for soy hydrolysate screening with the advantage of fast speed, low cost and non-destructive.  相似文献   

13.
14.
Reverse genetics was used to analyze the host range of two avian influenza viruses which differ in their ability to replicate in mouse and human cells in culture. Engineered viruses carrying sequences encoding amino acids 362 to 581 of PB2 from a host range variant productively infect mouse and human cells.  相似文献   

15.
A new screening method for flunitrazepam in colourless alcoholic beverages based on a spectroscopic technique is proposed. Absorption and steady‐state fluorescence of flunitrazepam and its protonated form with various acids were investigated. The redshift of the wavelength of maximum absorption was distinctively observed in protonated flunitrazepam. An emissive fluorescence at 472 nm was detected in colourless spirits (vodka and tequila) at room temperature. 2‐M perchloric acid was the most appropriated proton source. By using electron ionization mass spectrometry and time‐dependent density functional theory calculations, the possible structure of protonated flunitrazepam was identified to be 2‐nitro‐N‐methylacridone, an acridone derivative as opposed to 2‐methylamino‐5‐nitro‐2′‐fluorobenzophenone, a benzophenone derivative. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The application of single nucleotide polymorphisms (SNPs) in plant breeding involves the analysis of a large number of samples, and therefore requires rapid, inexpensive and highly automated multiplex methods to genotype the sequence variants. We have optimized a high-throughput multiplexed SNP assay for eight polymorphisms which explain two agronomic and three grain quality traits in rice. Gene fragments coding for the agronomic traits plant height (semi-dwarf, sd-1 ) and blast disease resistance ( Pi-ta ) and the quality traits amylose content ( waxy ), gelatinization temperature ( alk ) and fragrance ( fgr ) were amplified in a multiplex polymerase chain reaction. A single base extension reaction carried out at the polymorphism responsible for each of these phenotypes within these genes generated extension products which were quantified by a matrix-assisted laser desorption ionization-time of flight system. The assay detects both SNPs and indels and is co-dominant, simultaneously detecting both homozygous and heterozygous samples in a multiplex system. This assay analyses eight functional polymorphisms in one 5 µL reaction, demonstrating the high-throughput and cost-effective capability of this system. At this conservative level of multiplexing, 3072 assays can be performed in a single 384-well microtitre plate, allowing the rapid production of valuable information for selection in rice breeding.  相似文献   

17.
Betamethasone is a synthetic corticosteroid designed to exert a marked glucocorticoid activity. As the free alcohol, betamethasone finds widespread clinical applications related to its anti-inflammatory and immunosuppressant activity. In the present study, a fast, sensitive, robust method was developed for the determination and quantification of betamethasone in human plasma by liquid chromatography coupled with tandem mass spectrometry, using photospray ionization in negative mode. Betamethasone was extracted from 0.5 ml human plasma by liquid-liquid extraction (LLE) using chloramphenicol as internal standard. The method has a chromatographic run of 2.5 min using a C(18) analytical column (100 mm x 2.1 mm i.d.) and the linear calibration curve over the range was linear from 0.05 to 50 ng ml(-1) (r(2)>0.993). The between-run precision, based on the relative standard deviation replicate quality controls was 94.1% (0.15 ng ml(-1)), 90.7% (4.0 ng ml(-1)) and 97.2% (40 ng ml(-1)). The between-run accuracy for the above-mentioned concentrations was 11.9, 9.0 and 9.8%, respectively. The method herein described was employed in a bioequivalence study of two formulations of dexchlorpheniramine/betamethasone 2 mg/0.25 mg tablets.  相似文献   

18.
19.
20.
Approximately 20,000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13,000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号